Francisella tularensis, a small gram-negative intracellular bacterium responsible for causing tularemia, is highly pathogenic and classified as a category A agent of bioterrorism. As for other intracellular pathogens, successful protective immune responses to Francisella tularensis require rapid and efficient induction of gamma interferon (IFN-gamma) production. Studies using intracellular bacteria such as Listeria monocytogenes as well as Francisella suggest that natural killer (NK) and T cells are important sources of IFN-gamma. However, comprehensive characterization of specific sources of IFN-gamma produced during Francisella infection in vivo remains incomplete, and depletion of NK cells before infection of mice with the F. tularensis live vaccine strain (LVS) has little impact on the course or outcome of infection. In this study, we determined the cell subpopulations that respond quickly to intradermal F. tularensis LVS infection of mice by producing IFN-gamma within hours to a few days. Splenic and liver lymphocytes were obtained from LVS-infected mice and analyzed for IFN-gamma mRNA by reverse transcription-PCR, for intracellular cytokine expression by multiparameter flow cytometry, and for ex vivo production of IFN-gamma protein by enzyme-linked immunosorbent assay. Cells producing IFN-gamma were readily detectable by day 3 after infection, and numbers progressively increased through days 5 to 7. Importantly, the cell types responsible for IFN-gamma production were much more varied than expected: these included not only NK cells and T cells, which might be predicted, but also other cells, including dendritic cells (DCs), "NK DCs," NK T cells, and neutrophils. Most importantly, since RAG-1 knockout mice appeared to exhibit a frequency of IFN-gamma-producing cells comparable to that of intact wild-type mice, early IFN-gamma production by innate immune cells does not depend on the presence of T or B cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2519408 | PMC |
http://dx.doi.org/10.1128/IAI.00514-08 | DOI Listing |
Tularemia is a rare nationally notifiable zoonosis, caused by the tier-1 select agent Francisella tularensis, that has been reported from all U.S. states except Hawaii.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia.
In bacteria the formation of disulphide bonds is facilitated by a family of enzymes known as the disulphide bond forming (Dsb) proteins, which, despite low sequence homology, belong to the thioredoxin (TRX) superfamily. Among these enzymes is the disulphide bond-forming protein A (DsbA); a periplasmic thiol oxidase responsible for catalysing the oxidative folding of numerous cell envelope and secreted proteins. Pathogenic bacteria often contain diverse Dsb proteins with distinct functionalities commonly associated with pathogenesis.
View Article and Find Full Text PDFAnimals (Basel)
November 2024
Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014 Córdoba, Spain.
is a vector-borne zoonotic bacterium that causes tularemia, a disease of great importance for animal and public health. Although wild lagomorphs are considered one of the major reservoirs of this bacterium, information about the circulation of in European wild rabbit () and Iberian hare () populations in Europe is still very limited. In Spain, is present in northern central regions, with recurrent outbreaks occurring annually.
View Article and Find Full Text PDFFront Microbiol
November 2024
Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France.
Tularemia is a re-emerging zoonosis in many endemic countries. It is caused by , a gram-negative bacterium and biological threat agent. Humans are infected from the wild animal reservoir, the environmental reservoir or by the bite of arthropod vectors.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!