The ubiquitination of the receptor that mediates signaling induced by the polypeptide pituitary hormone prolactin (PRL) has been shown to lead to the degradation of this receptor and to the ensuing negative regulation of cellular responses to PRL. However, the mechanisms of PRL receptor (PRLr) proteolysis remain largely to be determined. Here we provide evidence that PRLr is internalized and primarily degraded via the lysosomal pathway. Ubiquitination of PRLr is essential for the rapid internalization of PRLr, which proceeds through a pathway dependent on clathrin and the assembly polypeptide 2 (AP2) adaptor complexes. Recruitment of AP2 to PRLr is stimulated by PRLr ubiquitination, which also is required for the targeting of already internalized PRLr to the lysosomal compartment. While mass spectrometry analysis revealed that both monoubiquitination and polyubiquitination (via both K48- and K63-linked chains) occur on PRLr, the results of experiments using forced expression of ubiquitin mutants indicate that PRLr polyubiquitination via K63-linked chains is important for efficient interaction of PRLr with AP2 as well as for efficient internalization, postinternalization sorting, and proteolytic turnover of PRLr. We discuss how specific ubiquitination may regulate early and late stages of endocytosis of PRLr and of related receptors to contribute to the negative regulation of the magnitude and duration of downstream signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2519723 | PMC |
http://dx.doi.org/10.1128/MCB.00350-08 | DOI Listing |
The specific role that prolactin plays in lactational infertility, as distinct from other suckling or metabolic cues, remains unresolved. Here, deletion of the prolactin receptor (Prlr) from forebrain neurons or arcuate kisspeptin neurons resulted in failure to maintain normal lactation-induced suppression of estrous cycles. Kisspeptin immunoreactivity and pulsatile LH secretion were increased in these mice, even in the presence of ongoing suckling stimulation and lactation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
Growth hormone (GH) signaling is essential for heart development. Both GH deficiency and excess raise cardiovascular risk. Human (h) and mouse (m) GH differ structurally and functionally: hGH binds both the GH receptor (GHR) and prolactin receptor (PRLR), whereas mGH binds only GHR; thus, there is the potential for differential effects.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China.
Poult Sci
January 2025
College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China. Electronic address:
To investigate the regulatory mechanism mediated by hypothalamic OPN5 on seasonal changes in the reproductive activities of domestic geese, 60 Magang ganders in their breeding period were selected for the experiment and evenly divided into an immunization group(OPN5-IM) and a control group. On days 0, 15 and 30, ganders in the immunized group were immunized with OPN5-KLH protein vaccine, and ganders in the control were immunized with the same amount of blank emulsified vaccine. Additionally, 120 female geese were provided to stimulate the reproductive activities of male geese.
View Article and Find Full Text PDFGen Comp Endocrinol
January 2025
Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan; Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan. Electronic address:
The elongation of primary feathers in neonatal chicks is delayed by the late-feathering K gene located on the Z chromosome. We recently found that the K gene slows feather growth by reducing the number of functional prolactin (PRL) receptor (PRLR) dimers. In this study, we investigated the molecular mechanisms by which PRL promotes feather elongation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!