Abnormal epigenetic modification is supposed to be one of factors accounting for inefficient reprogramming of the donor cell nuclei in ooplasm after somatic cell nuclear transfer (SCNT). Trichostatin A (TSA) is an inhibitor of histone deacetylase, potentially enhancing cloning efficiency. The aim of our present study was to establish the optimal TSA treatment in order to improve the development of handmade cloned (HMC) porcine embryos and examine the effect of TSA on their development. The blastocyst percentage of HMC embryos treated with 37.5 nM TSA for 22-24 h after activation increased up to 80% (control group-54%; P<0.05). TSA mediated increase in histone acetylation was proved by immunofluorescence analysis of acH3K9 and acH4K16. 2-cell stage embryos derived from TSA treatment displayed significant increase in histone acetylation compared to control embryos, whereas no significant differences were observed at blastocyst stage. During time-lapse monitoring, no difference was observed in the kinetics of 2-cell stage embryos. Compact morula (CM) stage was reached 15 h later in TSA treated embryos compared to the control. Blastocysts (Day 5 and 6) from HMC embryos treated with TSA were transferred to 2 recipients resulting in one pregnancy and birth of one live and five dead piglets. Our data demonstrate that TSA treatment after HMC in pigs may affect reprogramming of the somatic genome resulting in higher in vitro embryo development, and enable full-term in vivo development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2008.05.046 | DOI Listing |
Front Cell Neurosci
January 2025
IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States.
Once believed to be the culprits of epileptogenic activity, the functional properties of balloon/giant cells (BC/GC), commonly found in some malformations of cortical development including focal cortical dysplasia type IIb (FCDIIb) and tuberous sclerosis complex (TSC), are beginning to be unraveled. These abnormal cells emerge during early brain development as a result of a hyperactive mTOR pathway and may express both neuronal and glial markers. A paradigm shift occurred when our group demonstrated that BC/GC in pediatric cases of FCDIIb and TSC are unable to generate action potentials and lack synaptic inputs.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
Precision, or personalized, medicine aims to stratify patients based on variable pathogenic signatures to optimize the effectiveness of disease prevention and treatment. This approach is favorable in the context of brain disorders, which are often heterogeneous in their pathophysiological features, patterns of disease progression and treatment response, resulting in limited therapeutic standard-of-care. Here we highlight the transformative role that human induced pluripotent stem cell (hiPSC)-derived neural models are poised to play in advancing precision medicine for brain disorders, particularly emerging innovations that improve the relevance of hiPSC models to human physiology.
View Article and Find Full Text PDFRegen Ther
March 2025
Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA.
The generation of induced pluripotent stem cells (iPSCs) from differentiated somatic cells by Yamanaka factors, including pioneer transcription factors (TFs), has greatly reshaped our traditional understanding of cell plasticity and demonstrated the remarkable potential of pioneer TFs. In addition to iPSC reprogramming, pioneer TFs are pivotal in direct reprogramming or transdifferentiation where somatic cells are converted into different cell types without passing through a pluripotent state. Pioneer TFs initiate a reprogramming process through chromatin opening, thereby establishing competence for new gene regulatory programs.
View Article and Find Full Text PDFStem Cells Dev
January 2025
Department of Molecular Design and Synthesis, Functional Biology Division, Gifu University Graduate School of Medicine, Gifu, Japan.
Direct conversion is an innovative new technology that involves the conversion of somatic cells to target cells without passing through a pluripotent state. Forced expression alone or in combination with transcription factors (TFs), which are critical for the generation of target cells, is important for successful direct conversion. However, most somatic cells are unable to directly convert into target cells even with forced expression.
View Article and Find Full Text PDFBioData Min
January 2025
Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), National Institute of Biomedical Genomics, Kalyani, West Bengal, India.
Background And Objective: Accurate identification and prioritization of driver-mutations in cancer is critical for effective patient management. Despite the presence of numerous bioinformatic algorithms for estimating mutation pathogenicity, there is significant variation in their assessments. This inconsistency is evident even for well-established cancer driver mutations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!