The objective of this study was to synthesize and evaluate novel enzymatically stable dipeptide prodrugs for improved absorption of acyclovir. l-Valine-l-valine-acyclovir (LLACV), l-valine-d-valine-acyclovir (LDACV), d-valine-l-valine-acyclovir (DLACV) and d-valine-d-valine-acyclovir (DDACV) were successfully synthesized. The uptake and transport studies were conducted on a Caco-2 cell line. Buffer stability and metabolism of the prodrugs in Caco-2, rat intestine and liver homogenates were studied. Structure and purity of the all compounds were confirmed with LC-MS/MS and NMR spectroscopy. Uptake and transport of [(3)H] glycylsarcosine was inhibited by all prodrugs except DDACV. DLACV and DDACV exhibited no measurable degradation in Caco-2 homogenate. Except DDACV other three prodrugs were hydrolyzed in rat intestine and liver homogenates. The order of permeability across Caco-2 was LDACV>LLACV>DDACV>DLACV. A linear correlation between the amount of prodrug transported and over all permeability of acyclovir was established. This study shows that the incorporation of one d-valine in a dipeptide did not abolish its affinity towards peptide transporters (PEPT). Moreover, it enhanced enzymatic stability of prodrug to a certain extent depending on the position in a dipeptide conjugate. This strategy improved both the cellular permeability and the amount of intact prodrug transported which would enable targeting the nutrient transporters at blood ocular barrier (BOB).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556549 | PMC |
http://dx.doi.org/10.1016/j.ijpharm.2008.05.024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!