Honey bee workers use venom for the defence of the colony and themselves when they are exposed to dangers and predators. It is produced by a long thin, convoluted, and bifurcated gland, and consists of several toxic proteins and peptides. The present study was undertaken in order to identify the mechanisms that protect the venom gland secretory cells against these harmful components. Samples of whole venom glands, including the interconnected reservoirs, were separated by two-dimensional gel electrophoresis and the most abundant protein spots were subjected to mass spectrometric identification using MALDI TOF/TOF-MS and LC MS/MS. This proteomic study revealed four antioxidant enzymes: CuZn superoxide dismutase (SOD1), glutathione-S-transferase sigma 1 isoform A (GSTS1), peroxiredoxin 2540 (PXR2540) and thioredoxin peroxidase 1 isoform A (TPX1). Although glutathione-S-transferase (GST) has also been associated with xenobiotic detoxification, the protein we found belongs to the GST Sigma class which is known to protect against oxidative stress only. Moreover, we could demonstrate that the GST and SOD activity of the venom gland was low and moderate, respectively, when compared to other tissues from the adult honey bee. Several proteins involved in other forms of stress were likewise found but it remains uncertain what their function is in the venom gland. In addition to major royal jelly protein 9 (MRJP9), already found in a previous proteomic study, we identified MRJP8 as second member of the MRJP protein family to be associated with the venom gland. Transcripts of both MRJPs were amplified and sequenced. Two endocuticular structural proteins were abundantly present in the 2D-gel and most probably represent a structural component of the epicuticular lining that protects the secretory cells from the toxins they produce.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxicon.2008.05.003 | DOI Listing |
Toxicon
January 2025
Department of Biology, School of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran. Electronic address:
SARS-CoV-2 is from the enveloped virus family responsible for the COVID-19 pandemic. No efficient drugs are currently available to treat infection explicitly caused by this virus. Therefore, searching for effective treatments for severe illness caused by SARS-CoV-2 is crucial.
View Article and Find Full Text PDFMicroorganisms
December 2024
Key Laboratory of Genetic Evolution & Animal Models, Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China.
The venoms of Theraphosidae spiders have evolved into diverse natural pharmacopeias through selective pressures. is a global health threat that frequently causes life-threatening meningitis and fungemia, particularly in immunocompromised patients. In this study, we identify a novel anti- peptide, QS18 (QCFKVCFRKRCFTKCSRS), from the venom gland of China's native spider species by utilizing bioinformatic tools.
View Article and Find Full Text PDFAntibiotics (Basel)
November 2024
Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea.
Trans R Soc Trop Med Hyg
January 2025
Department of Radiodiagnosis, Dr RPGMC, Tanda, Kangra (HP) India 176001.
We describe a series of five patients with bilateral parotid enlargement as a sequalae to envenomation by the common krait (Bungarus caeruleus). Fine-needle aspiration cytology of the parotid gland was performed in four cases. The cytology revealed a mild lymphocytic inflammatory response in a red blood cell mixed proteinaceous background.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador.
Previous proteomic studies of viperid venom revealed that it is mainly composed of metalloproteinases (SVMPs), serine proteinases (SVSPs), phospholipase A2 (PLA2), and C-type lectins (CTLs). However, other proteins appear in minor amounts that affect prey and need to be identified. This study aimed to identify novel toxic proteins in the venom gland transcriptome of and , using data from NCBI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!