Intermolecular potential calculations for polynuclear aromatic hydrocarbon clusters.

J Phys Chem A

Department of Chemistry, The George Washington University, Washington, District of Columbia 20052, USA.

Published: July 2008

Calculations of intermolecular potentials are presented for homo-molecular and hetero-molecular clusters of 24 peri-condensed PAH spanning monomer masses ranging from 78 to 1830 Da. Binding energies of homo-molecular dimers rise rapidly with molecular size and asymptotically approach the experimentally established exfoliation energy for graphite of 5.0 kJ mol(-1) (carbon atom)(-1). Binding energies of hetero-molecular dimers correlate well with the reduced mass of the pair. From calculations of homo-molecular stacks, binding energies were observed to increase with each added molecule and rise asymptotically, approaching a limit which scales linearly with monomer molecular mass. These results are reviewed in the context of molecular growth in flames and in the context of astrophysical observations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp800483hDOI Listing

Publication Analysis

Top Keywords

binding energies
12
intermolecular potential
4
potential calculations
4
calculations polynuclear
4
polynuclear aromatic
4
aromatic hydrocarbon
4
hydrocarbon clusters
4
clusters calculations
4
calculations intermolecular
4
intermolecular potentials
4

Similar Publications

Affinity descriptor of metal catalysts: concept, measurement and application of oxygen affinity in the catalytic transformation of oxygenates.

Chem Soc Rev

January 2025

National-local Joint Engineering Research Center of Biomass Refining and High-quality Utilization, Changzhou University, Changzhou 213164, China.

Multiple oxygenate groups in biomass-based feedstocks are open to multiple catalytic pathways and products, typically resulting in low selectivity for the desired products. In this context, strategies for rational catalyst design are critical to obtain high selectivity for the desired products in biomass upgrading. The Sabatier principle provides a conceptual framework for designing optimal catalysts by following the volcanic relationship between catalyst activity for a reaction and the binding strength of a substrate on a catalyst.

View Article and Find Full Text PDF

Engineering a Novel NIR RNA-Specific Probe for Tracking Stress Granule Dynamics in Living Cells.

Anal Chem

January 2025

Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.

Real-time monitoring of the dynamics of cytosolic RNA-protein condensates, termed stress granules (SGs), is vital for understanding their biological roles in stress response and related disease treatment but is challenging due to the lack of simple and accurate methods. Compared with protein visualization that requires complex transfection procedures, direct RNA labeling offers an ideal alternative for tracking SG dynamics in living cells. Here, we propose a novel molecular design strategy to construct a near-infrared RNA-specific fluorescent probe () for tracking SGs in living cells.

View Article and Find Full Text PDF

The [18F] F-PSMA Probe: Chemical Perspectives.

Curr Med Chem

January 2025

Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, Rio de Janeiro, 21941906, Brazil.

This study discusses the chemical perspectives of the [18F]F-PSMA probe, a pivotal tool in prostate cancer imaging. [18F]Fluorine, a positron emitter with a half-life of 109.8 minutes, is produced in a cyclotron by bombarding [18O]-enriched targets with protons.

View Article and Find Full Text PDF

The molecular mechanism of transforming red light signal to (E)-β-caryophyllene biosynthesis in Arabidopsis.

Physiol Plant

January 2025

Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, China.

It is known that red light irradiation enhances the biosynthesis of (E)-β-caryophyllene in plants. However, the underlying mechanism connecting red light to (E)-β-caryophyllene biosynthesis remains elusive. This study reveals a molecular cascade involving the phyB-PIF4-MYC2 module, which regulates (E)-β-caryophyllene biosynthesis in response to the red light signal in Arabidopsis thaliana.

View Article and Find Full Text PDF

Trivalent chromium (Cr) is a heavy metal widely present in tannery wastewater, and organic ligands represented by gallic acid (GA) have significant effects on the environmental behavior of Cr. This study explored the binding process of Cr with GA through the integration of ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR), and fluorescence spectroscopy coupled with two-dimensional correlation analyses (2DCOS). UV-vis results showed that the average molecular weight of the solutions gradually increased with the addition of Cr ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!