Surface nanocrystallization using a surface mechanical attrition treatment effectively activates the surface of magnesium alloys due to the increase in grain boundary diffusion channels. As a result, the temperature of subsequent surface alloying treatment of pure Mg and AZ91 alloy can be reduced from 430 degrees C to 380 degrees C. Thus, it is possible to combine the surface alloying process with the solution treatment for this type of alloy. After surface alloying, the hardness of the alloyed layer is 3 to 4 times higher than that of the substrate and this may significantly improve the wear resistance of magnesium alloys.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2008.373 | DOI Listing |
Langmuir
January 2025
Department of Chemistry, Yuvaraja's College, University of Mysore, Manasagangotri, 570006 Mysuru, India.
Al-air batteries are distinguished by their high theoretical energy density, yet their broader application is hindered by hydrogen evolution corrosion. This research focuses Beta (+) d-glucose (S1) and Adonite (S2) as potential corrosion inhibitors for the Al-5052 alloy within a 4 M NaOH solution. Utilizing electrochemical techniques, hydrogen evolution assessments, and surface analyses, our findings indicate enhancements in anode utilization by 21.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.
Formic acid (HCOOH) is one of the essential molecules for CO utilization including methanol synthesis and hydrogen carriers. In this study, we have investigated the chemical processes of hydrogen and HCOOH on a dilute-alloy Pd-Cu(111) surface using high-resolution X-ray photoelectron spectroscopy (HR-XPS) and density functional theory (DFT) calculations. The present Pd-Cu(111) surface was prepared at 500 K, and the observed core-level shifts of Pd 3d indicate that Pd atoms were located at the surface and subsurface sites: 335.
View Article and Find Full Text PDFSmall
January 2025
Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China.
The propensity of zinc (Zn) to form irregular electrodeposits at liquid-solid interfaces emerges as a fundamental barrier to high-energy, rechargeable batteries that use zinc anodes. So far, tremendous efforts are devoted to tailoring interfaces, while atomic-scale reaction mechanisms and the related nanoscale strain at the electrochemical interface receive less attention. Here, the underlying atomic-scale reaction mechanisms and the associated nanoscale strain at the electrochemical alloy interface are investigate, using gold-zinc alloy protective layer as a model system.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
Growing global population, escalating energy consumption, and climate change threaten future energy security. Fossil fuel combustion, primarily coal, oil, and natural gas, exacerbates the greenhouse effect driving global warming through CO emissions. To address such issues, research is focused on converting CO into valuable fuels and chemicals, which aims to reduce noxious CO and simultaneously bridge the gap between energy demands and sustainable supply.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Ammonia has garnered significant attention as a promising hydrogen carrier due to its high volumetric energy density, milder storage conditions, and relatively mature infrastructure. The electrochemical ammonia oxidation reaction (AOR) can facilitate the release of hydrogen from ammonia at the point of use, enabling on-demand hydrogen production without the need for high pressure storage. However, current AOR catalysts exhibit high overpotentials and sluggish kinetics, and they are susceptible to poisoning by AOR byproducts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!