Determination of atmospheric hydroxyl radical by HPLC coupled with electrochemical detection.

J Environ Sci (China)

College of Environmental Sciences, Peking University, Beijing 100871, China.

Published: January 2009

AI Article Synopsis

  • The hydroxyl radical (*OH) is important for breaking down atmospheric compounds, but measuring it is challenging due to its reactivity and low levels.
  • A new measurement method using high-performance liquid chromatography and coulometric detection (HPLC-CD) was developed, allowing for the indirect detection of *OH through its reaction products with salicylic acid and its derivatives.
  • The method achieved very low detection limits for the reaction products and successfully measured *OH levels in both clean and polluted air, proving its effectiveness.

Article Abstract

The hydroxyl radical (*OH) plays a central role in the oxidation and removal of many atmospheric compounds. Measurement of atmospheric *OH is very difficult because of its high reactivity and low atmospheric abundance. In this article, a simple and highly sensitive method, high performance liquid chromatography coupled with coulometric detection (HPLC-CD), was developed to determine *OH indirectly by determining its reaction products with salicylic acid (SAL), 2,3-dihydroxybenzoic acid (2,3-DHBA), and 2,5-dihydroxybenzoic acid (2,5-DHBA). Under the optimum conditions for its determination, 2,3-DHBA and 2,5-DHBA could be well separated and the detection limits for 2,3-DHBA were 3 x 10(-10) mol/L and for 2,5-DHBA were 1.5 x 10(-10) mol/L, which were lower than most previous reports. This method was also applied to measure atmospheric hydroxyl radical levels and demonstrated the feasibility in clean and polluted air.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1001-0742(08)60003-0DOI Listing

Publication Analysis

Top Keywords

hydroxyl radical
12
atmospheric hydroxyl
8
10-10 mol/l
8
determination atmospheric
4
radical hplc
4
hplc coupled
4
coupled electrochemical
4
electrochemical detection
4
detection hydroxyl
4
radical *oh
4

Similar Publications

Aging of Polystyrene Micro/Nanoplastics Enhances Cephalosporin Phototransformation via Structure-Sensitive Interfacial Hydrogen Bonding.

Environ Sci Technol

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China.

Beyond their roles in adsorbing and transporting pollutants, microplastics (MPs) and nanoplastics (NPs), particularly polystyrene variants (PS-M/NPs), have emerged as potential accelerators for the transformation of coexisting contaminants. This study uncovered a novel environmental phenomenon induced by aged PS-M/NPs and delved into the underlying mechanisms. Our findings revealed that the aged PS-M/NP particles significantly amplified the photodegradation of common cephalosporin antibiotics, and the extent of enhancement was tightly correlated to the molecular structures of cephalosporin antibiotics.

View Article and Find Full Text PDF

Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.

View Article and Find Full Text PDF

Aggregated gold nanoparticles as photoactivators for the photopolymerization of proteins.

J Photochem Photobiol B

January 2025

Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA. Electronic address:

Photopolymerization of bovine serum albumin was carried out using reactive oxygen species (ROS) generated by the irradiation of citrate-stabilized gold nanoparticles by a pulsed Nd:YAG laser. The ROS in this case, singlet oxygen (O), targets aromatic amino acids within the protein to induce photopolymerization or crosslinking. Other ROS, like the hydroxyl radical, can also form in solution and under high-energy irradiation.

View Article and Find Full Text PDF

Singlet oxygen presenting a higher detoxification potential on enrofloxacin than sulfate and hydroxyl radicals.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China. Electronic address:

With the aid of radical and non-radical reactive species (RS), advanced oxidation processes can efficiently degrade emerging organic contaminants including antibiotics but may generate toxic transformation products (TPs). However, the detoxification capacity of popular RS has not been well elucidated. This study compared the detoxification of enrofloxacin (ENR) with three RS-dominated systems: O, SO+OH, OH.

View Article and Find Full Text PDF

Molecular composition of hydroxyl radical-resistant organics in municipal solid waste leachate.

J Hazard Mater

December 2024

School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China. Electronic address:

Although hydroxyl radicals (OH) degrade organic pollutants nonselectively, their mineralization rate during the treatment of waste leachate biological treatment effluent (BTL) using Fenton or Fenton-like systems is not high, and the reason is unknown. In this study, we investigated three typical Fenton-like systems that act on dissolved organic matter (DOM) in BTL. We analyzed the molecular composition of DOM resistant to OH, using ultrahigh resolution mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!