Telomerase is important in tumor initiation and cellular immortalization. Given the striking correlations between telomerase activity and proliferation capacity in tumor cells, telomerase had been considered as a potentially important molecular target in cancer therapeutics. A series of 2,7-diamidoanthraquinone were designed and synthesized. They were evaluated for their effects on telomerase activity, hTERT expression, cell proliferations, and cytotoxicity. In the series, compounds (6, 10, 13, 16, 18, 19, 20-22, and 24) showed potent telomerase inhibitory activity, while compounds 19, 21, and 22 activated hTERT expression in normal human fibroblasts. The results indicated that 2,7-diamidoanthraquinones represent an important class of compounds for telomerase-related drug developments. Compounds 8, 16, 18, 26, and 32 were also selected by the NCI for Screening Program and demonstrated high anti-proliferative activity against 60 human cancer cell lines. Structure-activity relationships (SAR) study revealed that the test compounds with side chains two carbon spacer between amido and amine are important structural moiety for telomerase inhibition. Although the exact mechanism of how this amine group contributes to its activity is still unclear, however, the amine group in the extended arm of the bis-substituted anthraquinone might contribute to proper binding to the residues within the grove of G-quadruplex structure. Our results indicated that the 2,7-disubstituted amido-anthraquinones are potent telomerase inhibitors that have the potential to be further developed into novel anticancer chemotherapeutic agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2008.05.072 | DOI Listing |
The shelterin complex protects chromosome ends from the DNA damage repair machinery and regulates telomerase access to telomeres. Shelterin is composed of six proteins (TRF1, TRF2, TIN2, TPP1, POT1 and RAP1) that can assemble into various subcomplexes . However, the stoichiometry of the shelterin complex and its dynamic association with telomeres in cells is poorly defined.
View Article and Find Full Text PDFCancer Res Commun
January 2025
Charité, Berlin, Germany.
Telomerase is reactivated by genomic TERT rearrangements in ~30% of diagnosed high-risk neuroblastomas. Dismal patient prognosis results if the RAS/MAPK/ALK signaling transduction network also harbors mutations. We present a liquid biopsy-based monitoring strategy for this particularly vulnerable pediatric patient subgroup, for whom real-time molecular diagnostic tools are limited to date.
View Article and Find Full Text PDFOral Oncol
January 2025
Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy.
Head and neck squamous cell carcinomas (HNSCCs) represent a heterogeneous group of malignancies with multifactorial aetiologies. High-risk human papillomavirus (hrHPV) infections, particularly HPV16, and the dysregulation of telomerase activity, specifically through its catalytic subunit, telomerase reverse transcriptase (TERT) are among the key contributors to HNSCC development and progression. HPV promotes oncogenesis via the E6 and E7 oncoproteins, which inactivate tumour suppressors TP53 and RB1, leading to unchecked cellular proliferation.
View Article and Find Full Text PDFJ Pediatr Surg
December 2024
Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. Electronic address:
Background: Patients with diffuse anaplastic Wilms tumor (DAWT) experience relatively poor oncologic outcomes. Previous work has described mechanisms of telomerase upregulation in DAWT, posing a potential therapeutic target.
Methods: We assessed in vitro sensitivity to vincristine, irinotecan, and telomerase-targeting drug 6-thio-2'-deoxyguanosine (6 dG) in DAWT cell lines WiT49 and PDM115 and in spheroids derived from cell lines and four DAWT patient-derived xenografts (PDX).
Sci Adv
January 2025
Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA.
Unlike most species that use telomerase for telomere maintenance, many dipterans, including , rely on three telomere-specific retrotransposons (TRs)-, , and -to form tandem repeats at chromosome ends. Although TR transcription is crucial in their life cycle, its regulation remains poorly understood. This study identifies the Mediator complex, E2F1-Dp, and Scalloped/dTEAD as key regulators of TR transcription.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!