We herein isolated plasmalogen-deficient Chinese hamster ovary (CHO) mutant, ZPEG251, with a phenotype of normal import of peroxisomal matrix and membrane proteins. In ZPEG251, plasmenylethanolamine (PlsEtn) was severely reduced. Complementation analysis by expression of genes responsible for the plasmalogen biogenesis suggested that alkyl-dihydroxyacetonephosphate synthase (ADAPS), catalyzing the second step of plasmalogen biogenesis, was deficient in ZPEG251. ADAPS mRNA was barely detectable as verified by Northern blot and reverse transcription-PCR analyses. Defect of ADAPS expression was also assessed by immunoblot. As a step toward delineating functional roles of PlsEtn, we investigated its subcellular localization. PlsEtn was localized to post-Golgi compartments and enriched in detergent-resistant membranes. Transport of PlsEtn to post-Golgi compartments was apparently affected by lowering cellular ATP, but not by inhibitors of microtubule assembly and vesicular transport. Partitioning of cholesterol and sphingomyelin, a typical feature of lipid rafts, was not impaired in plasmalogen-deficient cells, including peroxisome assembly-defective mutants, hence suggesting that PlsEtn was not essential for lipid-raft architecture in CHO cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamcr.2008.05.018 | DOI Listing |
Int J Mol Sci
December 2024
Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia.
The TRAPP (TRAnsport Protein Particle) protein complex is a multi-subunit complex involved in vesicular transport between intracellular compartments. The TRAPP complex plays an important role in endoplasmic reticulum-to-Golgi and Golgi-to-plasma membrane transport, as well as autophagy. TRAPP complexes comprise a core complex, TRAPPI, and the association of peripheral protein subunits to make two complexes, known as TRAPPII and TRAPPIII, which act as Guanine Nucleotide Exchange Factors (GEFs) of Rab11 and Rab1, respectively.
View Article and Find Full Text PDFN Biotechnol
November 2024
Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria. Electronic address:
β1,4-galactosylation is a typical human N-glycan formation with functional impact on proteins, particularly known for IgGs. Therefore, the expression of recombinant proteins with controlled galactosylation is an important quality parameter in the biotech industry. Here we describe the establishment of a plant-based expression platform for the manufacturing of recombinant proteins carrying β1,4-galactosylated N-glycans.
View Article and Find Full Text PDFJ Cell Biol
December 2024
Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
We identify BEACH domain-containing proteins (BDCPs) as novel membrane coat proteins involved in the sorting of transmembrane proteins (TMPs) on the trans-Golgi network and tubular sorting endosomes. The seven typical mammalian BDCPs share a predicted alpha-solenoid-beta propeller structure, suggesting they have a protocoatomer origin and function. We map the subcellular localization of seven BDCPs based on their dynamic colocalization with RAB and ARF small GTPases and identify five typical BDCPs on subdomains of dynamic tubular-vesicular compartments on the intersection of endocytic recycling and post-Golgi secretory pathways.
View Article and Find Full Text PDFNat Cell Biol
November 2024
Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
EMBO J
November 2024
School of biological sciences, Seoul National University, Seoul, 08826, Korea.
Lipidated ATG8/LC3 proteins are recruited to single membrane compartments as well as autophagosomes, supporting their functions. Although recent studies have shown that Golgi-LC3 lipidation follows Golgi damage, its molecular mechanism and function under Golgi stress remain unknown. Here, by combining DLK1 overexpression as a new strategy for induction of Golgi-specific LC3 lipidation, and the application of Golgi-damaging reagents, we unravel the mechanism and role of Golgi-LC3 lipidation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!