Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have demonstrated that monolayer films of randomly charged polystyrene sulfonated acid (PSSA) can be produced by the Langmuir technique, and observed the micro-domain structures, produced by the phase separation of electrostatically charged moieties and the hydrophobic moieties. Using atomic force microscopy and Langmuir isotherm, we found three specific regimes for the polyelectrolytes with various degrees of sulfonation (4-35%); very low charged PSSA (4-5%) in the hydrophobic regime, moderately charged PSSA (6-16%) which possessed a well-balanced nature between electrostatic and the hydrophobic interactions, and strongly amphiphilic nature of PSSA (6-16%) in the ionomer regime. Finally, we could categorize PSSA 35% in the polyelectrolyte regime, due to the dominance of the electrostatic interactions over the hydrophobic interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultramic.2008.04.075 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!