Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Carbon 1s shake-up spectra of fullerenes C(60), C(70), and C(82) and single-walled carbon nanotubes (SWCNTs) of (5,5), (6,5), and (7,6) have been investigated by using equivalent core hole Kohn-Sham density functional theory approach, in which only one-electron transition between molecular orbitals within core-hole potential is considered. The calculated spectra are generally in good agreement with results of equivalent core-hole time-dependent density functional theory calculations and available experiments, and reliable assignments for the complicated shake-up spectra of such large systems are provided. Calculations have also been performed for endohedral metallofullerene Gd@C(82) to demonstrate the possible use of shake-up processes to identify the charge transfer between the metal ion and the carbon cage. It is found that the exciton binding energy of all systems under investigation is around 0.5 eV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2943676 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!