We designed and tested an antioxidant nanoreactor based on encapsulation of Cu,Zn superoxide dismutase in amphiphilic copolymer nanovesicles, the membranes of which are oxygen permeable. The nanovesicles, made of poly(2-methyloxazoline)-poly(dimethylsiloxane)-poly(2-methyloxazoline), successfully encapsulated the protein during their self-assembling process, as proved by confocal laser-scanning microscopy and fluorescence-correlation spectroscopy. Electron paramagnetic resonance spectroscopy and circular dichroism analyses showed that no structural changes appeared in the protein molecules once inside the inner space of the nanovesicles. The function of this antioxidant nanoreactor was tested by pulse radiolysis, which demonstrated that superoxide dismutase remains active inside the nanovesicles and detoxifies the superoxide radical in situ. The membrane of our triblock copolymer nanovesicles plays a double role, both to shield the sensitive protein and to selectively let superoxide and dioxygen penetrate to its inner space. This simple and robust hybrid system provides a selective shielding of sensitive enzymes from proteolytic attack and therefore a new direction for developing drug delivery applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp803032wDOI Listing

Publication Analysis

Top Keywords

antioxidant nanoreactor
12
superoxide dismutase
12
nanoreactor based
8
copolymer nanovesicles
8
inner space
8
superoxide
5
nanovesicles
5
based superoxide
4
dismutase encapsulated
4
encapsulated superoxide-permeable
4

Similar Publications

A covalent organic framework-based nanoreactor for enhanced chemodynamic therapy through cascaded Fenton-like reactions and nitric oxide delivery.

Chem Commun (Camb)

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.

Herein, we report a nanoscale composite COF material loaded with copper peroxide (CuO) and nitric oxide (NO) prodrug a stepwise post-synthetic modification. The obtained CuO2@COF-SNO can undergo a cascade reaction in the tumor microenvironment to generate reactive oxygen and nitrogen species (ROS/RNS) to enhance chemodynamic therapy of the tumor.

View Article and Find Full Text PDF

The immunosuppressive tumor environment, characterized by elevated redox levels, significantly impairs the effectiveness of oxidation and the immune response. Here, an electron-accepting-inspired glycopolymer-based nanoreactor (chitosan-grafted nitrobenzene nanoparticles) CNP employing hypoxia-activated group nitrobenzene was constructed to realize cascade bilateral regulation of ferroptosis and immune activation by intervening antioxidant systems. The as-prepared CNP could consume nicotinamide adenine dinucleotide phosphate (NADPH) in the hypoxia-response process, allowing it to be involved in the recycling of glutathione (GSH) and thioredoxin (Trx).

View Article and Find Full Text PDF

Ischemia-reperfusion injury resulting from severe hemorrhagic shock continues to cause substantial damage to human health and impose a significant economic burden. In this study, we designed an Au-loaded yolk-shell MoS nanoreactor (Au@MoS) that regulates cellular homeostasis. experiments validated the efficacy of the nanomaterial in reducing intracellular reactive oxygen species (ROS) production during hypoxia and reoxygenation, and had great cell biocompatibility, Au@MoS.

View Article and Find Full Text PDF

Augmented the sensitivity of photothermal-ferroptosis therapy in triple-negative breast cancer through mitochondria-targeted nanoreactor.

J Control Release

November 2024

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Department of Radiation Oncology and Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu 610041, China. Electronic address:

Ferroptosis primarily relies on reactive oxygen (ROS) production and lipid peroxide (LPO) accumulation, which opens up new opportunities for tumor therapy. However, a standalone ferroptosis process is insufficient in inhibiting tumor progression. Unlike previously reported Fe-based nanomaterials, we have engineered a novel nanoreactor named IR780/Ce@EGCG/APT, which uses metal-polyphenols network (Ce@EGCG) based on rare-earth cerium and epigallocatechin gallate (EGCG) to encapsulate IR780 and modified with the aptamer (AS1411).

View Article and Find Full Text PDF
Article Synopsis
  • Abnormal tau protein changes are linked to Alzheimer's disease and can be caused by harmful particles in the body known as reactive oxygen species (ROS).
  • Hydrogen gas can help reduce these harmful particles, but current ways to use it aren't very effective.
  • Scientists created special tiny machines that use light to produce hydrogen gas right where it's needed, which might help in treating Alzheimer's disease in the future.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!