The authors used confocal laser scanning microscope to analyze human crown dentin. Specimens from 10 teeth were divided in two groups, one of which was decalcified and stained with hematoxylin and eosin. In the second group an undecalcified section was analyzed. Both groups were scanned by confocal microscope to generate optically sectioned images. All of the analyzed samples presented an intense autofluorescent that was ascribed to collagens. The degree of autofluorescence intensity was variable and might be due to collagen expression. The results indicate that a confocal microscope may be of help in analyzing and defining the nature and extent of collagen fibrils in human dentin.

Download full-text PDF

Source
http://dx.doi.org/10.1080/01913120801897216DOI Listing

Publication Analysis

Top Keywords

human crown
8
crown dentin
8
confocal laser
8
laser scanning
8
confocal microscope
8
analysis collagen
4
collagen distribution
4
distribution human
4
confocal
4
dentin confocal
4

Similar Publications

Anaerobic Adhesive Effect on the Counter-Torque of Zirconia Implant Abutment Screws: In Vitro Study.

Clin Implant Dent Relat Res

February 2025

Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Introduction: Implantology has become a primary solution for tooth loss due to excellent osseointegration and high long-term success rates. However, complications such as abutment screw loosening, especially in implant-supported single crowns, compromise prosthesis longevity. Anaerobic adhesives (AAs) have shown promise in mechanical fields for preventing screw loosening, but their effectiveness in dental implants, particularly zirconia, remains uncertain.

View Article and Find Full Text PDF

Like other pattern recognition disciplines, forensic handwriting examination relies on various human factors. Expert opinions in the field are based on visual analysis and comparison, and the evaluation of findings is generally conducted without reference to tabulated data. This high level of subjectivity may contribute to bias and error in the examination process.

View Article and Find Full Text PDF

Background: Anatomically formed healing abutments were suggested in literature to address many of the issues associated with immediate posterior implant insertion such as large extraction sockets that are extremely hard to seal without reflecting the mucoperiosteal flap, extraction sockets anatomy that are not suitable for regular healing abutment placement, and potentially high occlusal stresses when planning a temporary implant supported prothesis to improve the conditioning of supra implant tissue architecture and the emergence profile of the implant supported restorations.

Purpose: To clinically evaluate the peri-implant soft tissue profile of single posterior implant retained restorations and to assess patient related outcomes of the implant restorations that were conditioned immediately by CAD-CAM socket sealing abutments (SSA) versus those conditioned by Titanium (Ti) standard healing abutments (SHA).

Methods: Twenty participants received twenty-two single maxillary immediate implants after flapless minimally invasive tooth extraction and 3D guided implant placement in the posterior area (premolar and molar) and allocated randomly into two groups (n = 11), the intervention group: patients received PEEK SSA and the control group: the patients received Ti SHA.

View Article and Find Full Text PDF

Background Toothbrush manufacturers commonly use bristle materials such as nylon, polybutylene terephthalate, polypropylene, polyethylene terephthalate, boar hair, bamboo, carbon fiber, silicone, polylactic acid, or their modifications such as Curen. Nylon filaments have long been demonstrated to be durable and are widely used, but not much is known regarding the performance of Curen filaments compared to nylon filaments. This in vitro study compared the stiffness, abrasion potential, abrasion resistance, and bristle surface changes of Curen and nylon filaments.

View Article and Find Full Text PDF

Objective: This study presents a novel digital interproximal enamel reduction (IER) clinical procedure, aiming to improve the effectiveness of IER processes in orthodontic treatment.

Methods: A malocclusion case of skeletal-class I and angle-class I was selected for the experimental investigation. A three-dimensional (3D) model of the dentition was constructed using scanning data from a plaster model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!