A growing number of environmental and pharmacologic manipulations have been shown to influence adult neurogenesis. Borna disease virus (BDV) in rats causes cortical and subcortical infection with extrapyramidal motor symptoms, and hippocampal infection suppresses neurogenesis. Given the known effects of cannabinoids in promoting neural progenitor cell survival, the authors examined in vivo effects of chronic BDV infection in rats on BrdU-positive progenitor cells in striatum, together with neuroprotective actions of cannabinoids. Birth and survival of BrdU-positive progenitor cells in striatum of BDV-infected rats treated with a general cannabinoid agonist (WIN 55,212 1 mg/kg i.p. b.i.d. x 7 days) were examined, as well as anti-inflammatory, antiviral, and nutritional effects of cannabinoids. Cannabinoid treatment protected BrdU-positive progenitor cells in striatum that were susceptible to virus-induced injury (p < .01) through suppression of microglia activation (p < .001). As a consequence of their anti-inflammatory actions and support of neural progenitor cell survival, cannabinoids may be adjunctive treatment for encephalitides with microglial inflammation and neurodegeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13550280802074521DOI Listing

Publication Analysis

Top Keywords

progenitor cells
16
brdu-positive progenitor
12
cells striatum
12
borna disease
8
effects cannabinoids
8
neural progenitor
8
progenitor cell
8
cell survival
8
progenitor
6
cannabinoid rescue
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Aptah Bio Inc., San Carlos, CA, USA.

Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.

View Article and Find Full Text PDF

Background: Our previous study identified that Sildenafil (a phosphodiesterase type 5 [PDE5] inhibitor) is a candidate repurposable drug for Alzheimer's Disease (AD) using in silico network medicine approach. However, the clinically meaningful size and mechanism-of-actions of sildenafil in potential prevention and treatment of AD remind unknown.

Method: We conducted new patient data analyses using both the MarketScan® Medicare with Supplemental database (n = 7.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Imperial College London, London, United Kingdom; Division of Neurology, Department of Brain Sciences, Imperial College London, United Kingdom, London, London, United Kingdom.

Background: Liraglutide is a glucagon-like peptide-1 (GLP-1) analogue licensed for the treatment of type 2 diabetes mellitus (T2DM). Preclinical evidence in transgenic models of Alzheimer's disease suggests that liraglutide exerts neuroprotective effects by reducing amyloid oligomers, normalising synaptic plasticity and cerebral glucose uptake, and increasing the proliferation of neuronal progenitor cells.

Method: This is a multi-centre, randomised, double-blind, placebo-controlled, phase IIb trial of liraglutide in participants with mild to moderate Alzheimer's dementia, conducted at several centres in the UK.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Retromer Therapeutics, New York, NY, USA.

Background: Convergent evidence indicates that deficits in the endosomal recycling pathway underlies pathogenesis of Alzheimer's disease (AD). SORL1 encodes the retromer-associated receptor SORLA that plays an essential role in recycling of AD-associated cargos such as the amyloid precursor protein and the glutamatergic AMPA receptor. Importantly, loss of function pathogenic SORL1 variants are associated with AD.

View Article and Find Full Text PDF

Background: Although investment in biomedical and pharmaceutical research has increased significantly over the past two decades, there are no oral disease-modifying treatments for Alzheimer's disease (AD).

Method: We performed comprehensive human genetic and multi-omics data analyses to test likely causal relationship between EPHX2 (encoding soluble epoxide hydrolase [sEH]) and risk of AD. Next, we tested the effect of the oral administration of EC5026 (a first-in-class, picomolar sEH inhibitor) in a transgenic mouse model of AD-5xFAD and mechanistic pathways of EC5026 in patient induced Pluripotent Stem Cells (iPSC) derived neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!