Novel peptide-based pepsin inhibitors containing an epoxide group.

J Enzyme Inhib Med Chem

Department of Chemistry, Faculty of Science and Engineering, Aoyama Gakuin University, Sagamihara, Kanagawa, Japan.

Published: June 2008

1,2-Epoxy-3-(p-nitrophenoxy)propane (EPNP) is known to inhibit pepsin A and other aspartic proteinases by reacting with the active site aspartic acid residue(s). However, the reaction is considerably slow in general, and therefore, it is desirable to develop similar reagents that are capable of inhibiting these enzymes more rapidly. In the present study, we synthesized a series of novel inhibitors which have a reactive epoxide group linked with peptide by a hydrazide bond, with a general structure: Iva-L-Val-L-Val-(L-AA)(n)-N2H2-ES-OEt (n = 0 approximately 2) (Iva, isovaleryl; AA, bulky hydrophobic or aromatic amino acid residue; ES, epoxysuccinyl). These inhibitors were shown to inhibit porcine pepsin A remarkably faster than EPNP.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14756360701611910DOI Listing

Publication Analysis

Top Keywords

epoxide group
8
novel peptide-based
4
peptide-based pepsin
4
pepsin inhibitors
4
inhibitors epoxide
4
group 12-epoxy-3-p-nitrophenoxypropane
4
12-epoxy-3-p-nitrophenoxypropane epnp
4
epnp inhibit
4
inhibit pepsin
4
pepsin aspartic
4

Similar Publications

Indirubin-3'-oxime as a dual-action agent: mitigating heat-induced male infertility in and inhibiting soluble epoxide hydrolase.

J Enzyme Inhib Med Chem

December 2025

Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Republic of Korea.

This study investigated the potential of the indirubin-3'-oxime (I3O) compound to mitigate temperature-induced male infertility in . Elevated temperatures significantly reduced egg-hatching rates, but I3O supplementation improved these rates, suggesting it can partially restore fertility under heat stress. Additionally, I3O was found to inhibit soluble epoxide hydrolase (sEH), an enzyme involved in the metabolism of epoxyeicosatrienoic acids, which are vital for reproductive health.

View Article and Find Full Text PDF

Polyethers are versatile materials extensively used in advanced as well as everyday applications. The incorporation of primary amine functionality into polyethers is particularly attractive due to its well-established coupling chemistries. However, the inherent nucleophilicity of amine group poses a challenge in the anionic ring-opening polymerization (ROP) of epoxides and requires the use of robust protecting groups that can withstand the harsh conditions of ROP without triggering undesirable side reactions.

View Article and Find Full Text PDF

Methyleugenol (ME) has been classified as a "group 2B carcinogen" by IARC. Its positional isomer methylisoeugenol (MIE) has been considered to be of "generally recognized as safe'' status by FDA. ME was more cytotoxic than MIE in cultured mouse primary hepatocytes.

View Article and Find Full Text PDF

The structural groups of 2-oxindole and tricyclic 3a-hydroxy-hexahydropyrrolo-[2,3-]indole (HO-HPI) are important pharmacophores. Chemical synthesis of complex alkaloids containing a 2-oxindole or HO-HPI moiety, especially the latter one, has been a long-standing challenge. Herein, we characterized the P450 enzyme AfnD, and its homologue proteins, HmtT, ClpD, KtzM, and LtzR, as cyclopeptide 2-oxindole and HO-HPI monooxygenases (cpOPMOs) that could introduce a 2-oxindole or HO-HPI moiety into the tryptophan-containing cyclopeptides in a pH-dependent manner.

View Article and Find Full Text PDF

Enhancing Mechanical and Antibacterial Performance of Tire Waste/Epoxidized Natural Rubber Blends Using Modified Zinc Oxide-Silica.

Polymers (Basel)

January 2025

Sustainable Polymer & Innovative Composite Materials Research Group, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.

This study investigates the synergistic effects of incorporating modified zinc oxide-silica (ZnO-SiO) into tire waste (TW) and epoxidized natural rubber (ENR) blends, with a focus on crosslinking dynamics, mechanical reinforcement, and antibacterial activity. The addition of ZnO-SiO significantly enhanced crosslink density, as evidenced by increased torque and accelerated cure rates. An optimal concentration of 10 phr was found to yield the highest performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!