Separation and characterization of respirable amphibole fibers from Libby, Montana.

Inhal Toxicol

New York State Department of Health, Wadsworth Center, Albany, New York, USA.

Published: June 2008

The vermiculite mine in Libby, Montana, was in operation for over 70 yr and was contaminated with asbestos-like amphibole fibers. The mining, processing, and shipping of this vermiculite led to significant fiber inhalation exposure throughout the community, and residents of Libby have developed numerous pulmonary diseases such as lung cancer and mesothelioma. The present study describes the separation of Libby 6-mix into respirable and nonrespirable size fractions by means of aqueous elutriation. The elutriator, designed to separate fibers with aerodynamic diameters smaller than 2.5 microm (respirable) from larger fibers, used an upward flow rate of 3.4 x 10(- 4) cm s(-1). The resultant respirable fraction constituted only 13% of the raw Libby 6-mix mass, and less than 2% of the fibers in the elutriated fraction had aerodynamic diameters exceeding 2.5 microm. Surface area of the elutriated fibers was 5.3 m(- 2) g(-1), compared to 0.53 m(-2) g(-1) for the raw fibers. There were no detectable differences in chemical composition between the larger and smaller fibers. Such harvesting of respirable fractions will allow toxicological studies to be conducted within a controlled laboratory setting, utilizing fiber sizes that may more accurately simulate historical exposure of Libby residents' lungs. Importantly, this work describes a method that allows the use of material enriched in more uniform respirable material than raw Libby 6-mix, making comparisons with other known fiber preparations more valid on a mass basis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3025600PMC
http://dx.doi.org/10.1080/08958370801932544DOI Listing

Publication Analysis

Top Keywords

libby 6-mix
12
fibers
8
amphibole fibers
8
libby montana
8
aerodynamic diameters
8
raw libby
8
libby
7
respirable
6
separation characterization
4
characterization respirable
4

Similar Publications

Erionite induces production of autoantibodies and IL-17 in C57BL/6 mice.

Toxicol Appl Pharmacol

March 2014

Department of Biological Sciences, Idaho State University, Pocatello, ID, USA. Electronic address:

Background: Erionite has similar chemical and physical properties to amphibole asbestos, which induces autoantibodies in mice. Current exposures are occurring in North Dakota due to the use of erionite-contaminated gravel. While erionite is known to cause mesothelioma and other diseases associated with asbestos, there is little known about its effects on the immune system.

View Article and Find Full Text PDF

B1a B-cells are concentrated in peritoneal and pleural cavities, are producers of 'natural auto-antibodies', and have been implicated in autoimmune responses. Their numbers are increased in humans and mice with systemic autoimmune diseases, but their role in the immune pathology is not known. Asbestos causes pulmonary, pleural, and peritoneal pathologies by accessing these tissues after inhalation.

View Article and Find Full Text PDF

The vermiculite mine in Libby, Montana, was in operation for over 70 yr and was contaminated with asbestos-like amphibole fibers. The mining, processing, and shipping of this vermiculite led to significant fiber inhalation exposure throughout the community, and residents of Libby have developed numerous pulmonary diseases such as lung cancer and mesothelioma. The present study describes the separation of Libby 6-mix into respirable and nonrespirable size fractions by means of aqueous elutriation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!