Rifampicin, one of the main first line anti-TB drugs, shows variable bioavailability in different marketed preparations and reasons cited include physiological, degradation, manufacturing/ processing, solid state, and bioavailability assessment procedure. Although the amorphous form of a drug is expected to exhibit higher solubility, the amorphous rifampicin has been reported to have a solubility disadvantage as compared to crystalline form II, which is used in marketed preparations. Amorphous form was generated and characterized by solid-state characterization techniques. Physical powder mixtures of form II with varying amounts of amorphous form were prepared, which were then subjected to solid-state characterization techniques and further evaluated for their dissolution behavior. Differential scanning calorimetry (DSC) scans show that area enclosed by integral of melting endotherm can be used for quantification of crystalline component, which can then be used to estimate amorphous content. No definite trend was evident in powder dissolution of mixtures that could implicate solubility difference of amorphous form. Intrinsic dissolution rate (IDR) results indicate that amorphous content has no effect on dissolution profiles of crystalline rifampicin.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03639040701842451DOI Listing

Publication Analysis

Top Keywords

amorphous form
16
amorphous content
12
amorphous
8
content dissolution
8
marketed preparations
8
solid-state characterization
8
characterization techniques
8
form
6
dissolution
5
dissolution characteristics
4

Similar Publications

Crystallography of the litharge to massicot phase transformation from neutron powder diffraction data.

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

CSIRO Division of Mineral Products, Port Melbourne, Victoria, Australia.

The crystallographic phase change from tetragonal litharge (α-PbO; P4/nmm) to orthorhombic massicot (β-PbO; Pbcm) has been studied by full-matrix Rietveld analysis of high-temperature neutron powder diffraction data collected in equal steps from ambient temperature up to 925 K and back down to 350 K. The phase transformation takes place between 850 and 925 K, with the coexisting phases having equal abundance by weight at 885 K. The product massicot remains metastable on cooling to near ambient temperature.

View Article and Find Full Text PDF

Electrochemical 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) offers a promising route to transform biomass into value-added chemicals. However, the competing oxygen evolution reaction (OER) greatly limits the HMFOR selectivity. Herein, we report a facile doping strategy to engineer oxygen intermediates adsorption on amorphous NiFe alloys to boost highly selective electrochemical HMF oxidation to produce 2,5-furandicarboxylic acid (FDCA), among which, amorphous Mn-doped NiFeB alloy displays a low HMFOR onset potential of 1.

View Article and Find Full Text PDF

The precise engineering of microporosity is challenging due to the interference at sub-nm scale from unexpected structural flexibility and molecular packing. Herein, the concept of topological supramolecular complexation is proposed for the feasible fabrication of hierarchical microporosity with broad tunability in amorphous form. The 2.

View Article and Find Full Text PDF

Dealing with radioactive waste, particularly from various industrial processes, poses significant challenges. This paper explores the use of lithium aluminate borate (Li-Al-B) glass matrix as an alternative method for immobilizing radioactive waste, focusing specifically on waste generated in tin smelting industries, known as tin slag. The study primarily concentrates on transforming tin slag, a byproduct abundant in Natural Occurring Radioactive Material (NORM), into a stable and safe form for disposal.

View Article and Find Full Text PDF

Amorphous solids form an enormous and underutilized class of materials. In order to drive the discovery of new useful amorphous materials further we need to achieve a closer convergence between computational and experimental methods. In this review, we highlight some of the important gaps between computational simulations and experiments, discuss popular state-of-the-art computational techniques such as the Activation Relaxation Technique (ARTn) and Reverse Monte Carlo (RMC), and introduce more recent advances: machine learning interatomic potentials (MLIPs) and generative machine learning for simulations of amorphous matter (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!