Effects of raf kinase inhibitor protein expression on metastasis and progression of human epithelial ovarian cancer.

Mol Cancer Res

Department of Immunology, Tianjin Medical University, Heping District Qixiangtai Road No. 22, Tianjin 300070, People's Republic of China.

Published: June 2008

Loss of function of metastasis suppressor genes is an important step in the progression to a malignant tumor type. Studies in cell culture and animal models have suggested a role of Raf kinase inhibitor protein (RKIP) in suppressing the metastatic spread of prostate cancer, breast cancer, and melanoma cells. However, the function of RKIP in ovarian cancer (OVCA) has not been reported. To explore the potential role of RKIP in epithelial OVCA metastasis, we detected the expression levels of RKIP protein in tissue samples from patients with epithelial OVCA. Consequently, the expression of RKIP is reduced in the poorly differentiated OVCA than in the well-differentiated and moderately differentiated OVCA. In addition, in vitro cell invasion assay indicated that the RKIP expression was inversely associated with the invasiveness of five OVCA cell lines. Consistent with this result, the cell proliferation, anchorage-independent growth, cell adhesion, and invasion were decreased in RKIP overexpressed cells but increased in RKIP down-regulated cells. Further investigation indicated that RKIP inhibited OVCA cell proliferation by altering cell cycle progression rather than promoting apoptosis. Furthermore, the overexpression of RKIP suppressed the ability of human OVCA cells to metastasize when the tumor cells were transplanted into nude mice. Our data show the effect of RKIP on the proliferation, migration, or adhesion of OVCA cells. These results indicate that RKIP is also a metastasis suppressor gene of human epithelial OVCA.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1541-7786.MCR-08-0093DOI Listing

Publication Analysis

Top Keywords

rkip
12
epithelial ovca
12
ovca
10
raf kinase
8
kinase inhibitor
8
inhibitor protein
8
human epithelial
8
ovarian cancer
8
metastasis suppressor
8
differentiated ovca
8

Similar Publications

circCCNY enhances lenvatinib sensitivity and suppresses immune evasion in hepatocellular carcinoma by serving as a scaffold for SMURF1 mediated HSP60 degradation.

Cancer Lett

January 2025

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China. Electronic address:

Lenvatinib is the standard first-line therapy for advanced hepatocellular carcinoma (HCC), but drug resistance significantly hampers its efficacy. Increasing evidence has shown that circular RNAs (circRNAs) play critical roles in HCC pathogenesis. However, the underlying mechanisms of lenvatinib sensitivity regulated by circRNAs remain largely unclear.

View Article and Find Full Text PDF

From Ca dysregulation to heart failure: β-adrenoceptor activation by RKIP postpones molecular damages and subsequent cardiac dysfunction in mice carrying mutant PLN by correction of aberrant Ca-handling.

Pharmacol Res

January 2025

Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, Würzburg 97078, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, Dortmund 44139, Germany; Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, Würzburg 97078, Germany. Electronic address:

Article Synopsis
  • Impaired calcium (Ca) handling in heart cells is a key feature of heart failure (HF), leading to issues like weakened heart contractions and irregular heartbeats.
  • The study used transgenic mice with a mutation affecting a calcium regulator (phospholamban) to understand how defects in calcium cycling contribute to HF, noting that these mice experience severe and fast-progressing heart failure.
  • Early treatment aimed at correcting calcium cycling using Raf kinase inhibitor protein (RKIP) was found to delay heart cell damage and improve overall health of the mice, indicating that addressing Ca dynamics early on could be crucial for preventing further complications in heart failure.
View Article and Find Full Text PDF

Therapeutic effect of novel drug candidate, PRG-N-01, on NF2 syndrome-related tumor.

Neuro Oncol

December 2024

Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea.

Background: NF2-related schwannomatosis (NF2-SWN) is associated with multiple benign tumors in the nervous system. NF2-SWN, caused by mutations in the NF2 gene, has developed into intracranial and spinal schwannomas. Because of the high surgical risk and frequent recurrence of multiple tumors, targeted therapy is necessary.

View Article and Find Full Text PDF

Semaglutide protects against diabetes-associated cardiac inflammation via Sirt3-dependent RKIP pathway.

Br J Pharmacol

December 2024

Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.

Background And Purpose: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) exert cardiovascular benefits in diabetic patients, but the underlying mechanisms remain incompletely understood. Semaglutide, a novel long-acting GLP-1RA, has shown a reduced risk of cardiovascular events. Based on these results, we investigated the therapeutic potential of semaglutide in diabetic cardiomyopathy and sought to elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Lung cancer (LC) is the leading cause of cancer-related deaths. Although low-dose computed tomography (LD-CT) reduces mortality, its clinical use is limited by cost, radiation, and false positives. Therefore, there is an urgent need for non-invasive and cost-effective biomarkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!