Unlabelled: The cancer vaccine TroVax, modified vaccinia Ankara encoding the tumor-associated antigen 5T4, has been tested in phase I and II studies in colorectal cancer patients. Monitoring of 5T4-specific immune responses in patients receiving TroVax is critical since it could inform future refinements to the therapeutic or provide a surrogate marker of clinical efficacy. Tumor-specific cytotoxic T lymphocyte (CTL) are considered to be a key component of an effective anti-cancer immune response. Though numerous techniques have been employed to identify CTL epitopes, many are labor intensive, of variable reliability or biased toward common alleles such as human leukocyte antigen (HLA)-A2. A new high-throughput technique, iTopia, enables peptides to be evaluated on the basis of their physical binding properties for HLA alleles. This technique has been utilized to rapidly screen a panel of overlapping peptides, spanning the length of 5T4. Initially, peptides which bound to four class I alleles (A*0101, A*0201, A*0301 and B*0702) were identified and their physical binding characteristics assessed further by analysis of relative affinity and complex stability. 46 putative CTL epitopes have been identified which bind to at least one of the four HLA alleles. Using PBMCs from patients vaccinated with TroVax, we have used the interferon gamma (IFN gamma) ELISpot assay to validate one predicted A1 and two A2 epitopes.

Conclusion: iTopia represents a rapid and high-throughput technique to identify CTL epitopes.

Download full-text PDF

Source
http://dx.doi.org/10.1093/intimm/dxn063DOI Listing

Publication Analysis

Top Keywords

ctl epitopes
12
tumor-associated antigen
8
antigen 5t4
8
identify ctl
8
high-throughput technique
8
physical binding
8
hla alleles
8
identification functional
4
functional validation
4
validation mhc
4

Similar Publications

Cystic echinococcosis (CE) is a worldwide zoonotic public health issue. The reasons for this include a lack of specific therapy options, increasing antiparasitic drug resistance, a lack of control strategies, and the absence of an approved vaccine. The aim of the current study is to develop a multiepitope vaccine against CE by in-silico identification and using different Antigen B subunits.

View Article and Find Full Text PDF

A Universal Multi-Epitope Vaccine Design Against Porcine Reproductive and Respiratory Syndrome Virus via Bioinformatics and Immunoinformatics Approaches.

Vet Sci

December 2024

Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China.

Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive disorders in sows and severe pneumonia in piglets, alongside immunosuppressive effects on the host. It poses a significant global threat to the swine industry, with no effective control measures currently available due to its complex pathogenesis and high variability. Conventional inactivated and attenuated vaccines provide inadequate protection and carry biosafety risks.

View Article and Find Full Text PDF

Bovine viral diarrhea virus (BVDV) is a significant pathogen that exerts substantial economic influence on the global cattle industry. Developing a safe and effective novel vaccine targeting various BVDV subtypes is critical for controlling BVDV infection. In the study, we created two distinct multi-epitope vaccines by linking highly conserved and dominant cytotoxic T-lymphocytes (CTL), helper T-lymphocytes (HTL), and B-cell epitopes from either the E0 or E2 envelope glycoprotein of diverse BVDV subtypes.

View Article and Find Full Text PDF

Despite advancements in antiretroviral therapy (ART) that reduces the viral load to undetectable levels and improve CD4 T cell counts, viral eradication has not been achieved due to HIV-1 persistence in resting CD4 T-cells. We, therefore, characterized the gene, which is essential for HIV-1 replication and pathogenesis, from 20 virologically controlled aging individuals with HIV (HIV) on long-term ART and improved CD4 T-cell counts, with a particular focus on older individuals. Peripheral blood mononuclear cell genomic DNA from HIV were used to amplify gene by polymerase chain reaction followed by nucleotide sequencing and analysis.

View Article and Find Full Text PDF

Introduction: Borna disease virus 1 (BoDV-1) is an emerging zoonotic RNA virus that can cause severe acute encephalitis with high mortality. Currently, there are no effective countermeasures, and the potential risk of a future outbreak requires urgent attention. To address this challenge, the complete genome sequence of BoDV-1 was utilized, and immunoinformatics was applied to identify antigenic peptides suitable for vaccine development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!