The experimental foundation for investigating the pharmacological action of hydroxycamptothecin at subcellular quantitative proteomic level can be obtained depending on the information of differentially expressed nuclear proteins in hydroxycamptothecin-treated cells and control cells. The apoptosis was induced by hydroxycamptothecin in hepatoma cells, the nucleus of cells were isolated and verified with western blot. Nuclear proteins labelled with cleavable isotope-coded affinity tag (c-ICAT) reagent were digested and purified. The expression ratio of the identical nuclear protein derived from apoptosis cell and control cell can be gained using shotgun proteomic method based on multiple dimensional liquid chromatography-linear ion trap/orbitrap mass spectrometer combined with c-ICAT strategy. A total of 42 nuclear proteins were significantly (P<0.05) altered in hydroxycamptothecin-treated cells, among them, 12 proteins showed significantly down-regulation, and 30 proteins showed up-regulation compared with control cells. The function of these proteins were likely involved in life processes of cells such as proliferation, apoptosis, differentiation, energy metabolism, nucleic acid synthesis and metabolism, structure of cell skeleton.
Download full-text PDF |
Source |
---|
Cell Mol Biol (Noisy-le-grand)
January 2025
Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Türkiye.
Cell Mol Biol (Noisy-le-grand)
January 2025
Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China. *Corresponding authors, E-mail:
The innate immune response is the first line of defense for the host against viral infections. Targeted degradation of pathogenic microorganisms through autophagy, in conjunction with pattern recognition receptors synergistically inducing the production of interferon (IFN), constitutes an important pathway for the body to resist viral infections. Rubicon, a Run domain Beclin 1-interacting and cysteine-rich domain protein, has an inhibitory effect on autophagy and IFN production.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
Hematologic Disease Center, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, Wulumuqi 830011, China. *Corresponding author, E-mail:
Objective This study investigated the regulatory effect of high mobility group protein B1 (HMGB1) in the peripheral blood of patients with primary immune thrombocytopenia (ITP) on myeloid dendritic cells (mDC) and Th17/regulatory T cells (Treg) balance. Methods The study enrolled 30 newly diagnosed ITP patients and 30 healthy controls.Flow cytometry was used to measure the proportion of mDC, Th17, and Treg cells in the peripheral blood of ITP patients and healthy controls.
View Article and Find Full Text PDFCell Biochem Funct
January 2025
Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, China.
The study of the mechanism of oligoasthenospermia, which is a major cause of male infertility, has been the focus of research in the field of male reproduction. TAp73, a member of the p53 family of oncogenes, is endowed with tumor-suppressing activity due to its structural and functional homology with p53. It has been found that TAp73, plays a key role in spermatogenesis and maintaining male reproduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!