CDC25A phosphatase, an essential component of the cell cycle machinery, is also a key player in integrating the specific signals of checkpoint control in response to DNA damage. There are several lines of evidence that indicate a role for CDC25A in cancer development, consistent with the fact that its overexpression is detected in human cancers. In particular we previously reported that CDC25A is overexpressed also in early breast carcinoma. Recent data suggest that oncogene activation during early stages of tumor development causes DNA replication stress resulting in the induction of DNA damage response (DDR) and that the selection of cells defecting in their DDR could lead to malignant progression. To address how CDC25A overexpression contributes to breast cancer development we established a cell model in which CDC25A was constitutively overexpressed in hTERT-immortalized primary human mammary epithelial cells. At the earliest passages following CDC25A transduction we observed DDR signs associated with unscheduled DNA replication origins. In the latest passages DDR was significantly impaired and, even after ionizing radiation exposition, cells failed to induce G1 and G2 checkpoints; moreover DNA replication stress conditions, such as aphidicolin treatment, highlighted increased fragile site breakages and destabilized chromosomes just in these latest passages cells. Our data suggest that CDC25A overexpression, pushing the cell through the cell cycle transitions, induces DDR alterations that might enhance genomic instability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.23659 | DOI Listing |
J Agric Food Chem
January 2025
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.
Thyroid cancer (THCA) is an increasingly common malignant tumor of the endocrine system, with its incidence rising steadily in recent years. For patients who experience recurrence or metastasis, treatment options are relatively limited, and the prognosis is poor. Therefore, exploring new therapeutic strategies has become particularly urgent.
View Article and Find Full Text PDFPhysiol Res
December 2024
Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
Disproportion between reactive oxygen species (ROS) production and the body's antioxidant system can cause oxidative stress, which is considered a common denominator in various pathological conditions, including cardiovascular diseases, aging, and cognitive disorders. The generation of free radicals, which occurs through partial reduction of oxygen, can quickly overwhelm the endogenous antioxidant system capacity of the cell. This causes lipid, protein, DNA and RNA damage, inflammation, and overall cell degeneration, which can be mitigated by various antioxidants.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Life Sciences, Faculty of Science and Technology, Beijing Normal University- Hong Kong Baptist University United International College, No. 2000 Jintong Road, Zhuhai, Guangdong 519087, China.
Nanoplastics, as emerging contaminants, have been causing great panic, potentially affecting human health in recent years. Some studies have indicated that nanoplastics may induce severe toxicity. However, the mechanisms underlying this potential toxicity are insufficiently understood.
View Article and Find Full Text PDFCancer Res Commun
January 2025
Zentalis Pharmaceuticals, Inc, San Diego, CA, United States.
KRAS is a potent oncogenic driver which results in downstream hyperactivation of MAPK signaling, while simultaneously increasing replication stress (RS) and accumulation of DNA damage. KRASG12C mutations are common and targetable alterations. Therapeutic inhibition of KRASG12C and eventual resistance to these inhibitors are also known to drive RS and DNA damage through adaptive mechanisms that maintain addiction to high MAPK signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!