Introduction: Mirtazapine is a racemic antidepressant with a multireceptor profile. Previous studies have shown that the enantiomers of mirtazapine have different pharmacologic effects in the brain of laboratory animals.

Materials And Methods: In the present study, we used positron emission tomography (PET) and autoradiography to study effects of (R)- and (S)-[(11)C]mirtazapine in the human brain. Detailed brain imaging by PET using three methods of kinetic data analysis showed no reliable differences between regional binding potentials of (R)- and (S)-[(11)C]mirtazapine in healthy subjects.

Results: Autoradiographic studies carried out in whole hemispheres of human brain tissue showed, however, that (R)- and (S)-mirtazapine differ markedly as inhibitors of [(3)H]clonidine binding at alpha(2)-adrenoceptors.

Conclusion: The multireceptor binding profiles of mirtazapine enantiomers, along with individual differences between subjects, may preclude PET neuroimaging from demonstrating reliable differences between the regional distribution and binding of (R)- and (S)-[(11)C]mirtazapine in the living human brain.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00213-008-1208-6DOI Listing

Publication Analysis

Top Keywords

human brain
12
mirtazapine enantiomers
8
reliable differences
8
differences regional
8
brain
5
neuroimaging mirtazapine
4
enantiomers humans
4
humans introduction
4
introduction mirtazapine
4
mirtazapine racemic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!