Docosahexaenoic acid sensitizes Ramos cells to Gamma-irradiation-induced apoptosis through involvement of PPAR-gamma activation and NF-kappaB suppression.

Mol Cell Biochem

National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University M. C., Tehran, Iran.

Published: October 2008

Gamma-irradiation (Gamma-IR) resistance is a character of many malignant cells that decreases the efficacy of radiotherapy. Although ionizing radiation activates multiple cellular factors that vary depending on dose and tissue specificity, the activation of nuclear factor-kappa B appears to be a well-conserved response in tumor cells exposed to Gamma-IR which can lead to the inhibition of radiation-induced apoptosis. Thus, inhibition of NF-kappaB activation is an important strategy to abolish radioresistance. Recently, we have demonstrated that docosahexaenoic acid (DHA; 22:6 n-3 polyunsaturated fatty acids)-induced apoptosis may occur via ligand-dependent transcription factor, peroxisome proliferator-activated receptors-gamma. Moreover, many reports described that activation of PPAR-gamma can lead to the induction of apoptosis through NF-kappaB inhibition. Therefore, we addressed the mechanism that NF-kappaB is a downstream target of DHA and may be involved in the process of radiosensitization. Ramos cells are a highly radiation-resistant and p53-deficient Burkitt's lymphoma cell line. The results of present study showed that cotreatment of Ramos cells with low doses of DHA and Gamma-IR leads to marked phosphorylation of IkappaB and translocation of p65/NF-kappaB to nucleus in parallel with increase in apoptosis. Preincubation of the cells with GW9662, a selective antagonist for PPAR-gamma, significantly prevented NF-kappaB activation profile. Taken together, these results suggest that low concentration of DHA inhibited Gamma-IR-induced activation of NF-kappaB and sensitized Ramos cells to IR-induced cytotoxicity. Pretreatment of Ramos cells with GW9662 abrogated the ability of DHA to inhibit Gamma-IR-induced activation of NF-kappaB and diminished the DHA radiosensitizing effect indicating that PPAR-gamma may act as a mediator of DHA in inhibition of NF-kappaB. Taken together, these results suggest that low concentration of DHA inhibited Gamma-IR-induced activation of NF-kappaB and sensitized Ramos cells to IR-induced cytotoxicity. Pretreatment of Ramos cells with GW9662 abrogated the ability of DHA to inhibit Gamma-IR-induced activation of NF-kappaB and diminished the DHA radiosensitizing effect indicating that PPAR-gamma may act as a mediator of DHA in inhibition of NF-kappaB.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-008-9838-xDOI Listing

Publication Analysis

Top Keywords

ramos cells
28
activation nf-kappab
20
gamma-ir-induced activation
16
inhibition nf-kappab
12
cells gw9662
12
nf-kappab
11
dha
11
cells
10
activation
9
docosahexaenoic acid
8

Similar Publications

Decoding the Molecular Basis of the Specificity of an Anti-sTn Antibody.

JACS Au

January 2025

UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.

The mucin -glycan sialyl Tn antigen (sTn, Neu5Acα2-6GalNAcα1--Ser/Thr) is an antigen associated with different types of cancers, often linked with a higher risk of metastasis and poor prognosis. Despite efforts to develop anti-sTn antibodies with high specificity for diagnostics and immunotherapy, challenges in eliciting high-affinity antibodies for glycan structures have limited their effectiveness, leading to low titers and short protection durations. Experimental structural insights into anti-sTn antibody specificity are lacking, hindering their optimization for cancer cell recognition.

View Article and Find Full Text PDF

Therapeutic efficacy and safety of adeno-associated virus (AAV) liver gene therapy depend on capsid choice. To predict AAV capsid performance under near-clinical conditions, we established side-by-side comparison at single-cell resolution in human livers maintained by normothermic machine perfusion. AAV-LK03 transduced hepatocytes much more efficiently and specifically than AAV5, AAV8 and AAV6, which are most commonly used clinically, and AAV-NP59, which is better at transducing human hepatocytes engrafted in immune-deficient mice.

View Article and Find Full Text PDF

A protein corona modulates the function of mineralization-competent matrix vesicles.

JBMR Plus

February 2025

Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil.

Mineralizing cells release a special class of extracellular vesicles known as matrix vesicles (MV), crucial for bone mineralization. Following their release, MV anchor to the extracellular matrix (ECM), where their highly specialized enzymatic machinery facilitates the formation of seed mineral within the MV's lumen, subsequently releasing it onto the ECM. However, how MV propagate mineral onto the collagenous ECM remains unclear.

View Article and Find Full Text PDF

Objective: To explore IL11 co-expression profiles in our previously reported RNA-sequencing dataset of OA articular cartilage, in interaction with IL6, and to investigate the effects of hrIL11 administration as potential therapeutic strategy for OA articular cartilage using our biomimetic aged human osteochondral explant model of OA.

Methods: We used RNA-sequencing datasets of macroscopically preserved and lesioned OA articular cartilage (N = 35 patients). Spearman correlations were calculated between IL11 and IL6 expression levels and genes expressed in cartilage (N = 20048 genes).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!