Alpha2 adrenergic modulation of NMDA receptor function as a major mechanism of RGC protection in experimental glaucoma and retinal excitotoxicity.

Invest Ophthalmol Vis Sci

Department of Biological Sciences, Allergan Pharmaceuticals, Irvine, California 92612, USA.

Published: October 2008

Purpose: alpha2 Agonists, such as brimonidine, have been shown to protect retinal ganglion cells (RGCs) in animal models of glaucoma and acute retinal ischemia. In this study, the authors investigated the neural mechanism that may underlie alpha2 neuroprotection of RGCs.

Methods: The authors used in situ RGCs in the isolated rat retina to investigate possible interactions between alpha2 and N-methyl-D-aspartate (NMDA) receptors and rat glaucoma or rabbit retinal NMDA excitotoxicity models to verify in vitro findings under in vivo conditions.

Results: Application of NMDA elicited a robust intracellular Ca(2+) signal and inward current in individual in situ RGCs voltage clamped at -70 mV. NMDA-elicited responses were blocked by D-AP5 (D-2-amino-5-phosphonopentanoic acid), a selective NMDA receptor antagonist. Brimonidine pretreatment also significantly reduced NMDA-elicited whole-cell currents and cytosolic Ca(2+) signals in RGCs. This suppressive action of brimonidine was blocked by alpha2 antagonists, cAMP analogs, an adenylate cyclase activator, and a cAMP-specific phosphodiesterase (PDE4) inhibitor, indicating that this brimonidine effect is mediated by the alpha2 receptor through a reduction of intracellular cAMP production. Brimonidine or NMDA receptor blockers protected RGCs in rat glaucoma and rabbit retinal NMDA excitotoxicity models. The brimonidine neuroprotective effect was abolished by an alpha2 antagonist or a PDE4 inhibitor in both in vivo models.

Conclusions: The results demonstrate alpha2 modulation of NMDA receptor function as an important mechanism for neuroprotection. These results suggest a new therapeutic approach based on neuromodulation, instead of direct inhibition, of the NMDA receptor for the treatment of glaucoma and other CNS disorders associated with NMDA receptor overactivation.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.08-2078DOI Listing

Publication Analysis

Top Keywords

nmda receptor
24
nmda
10
alpha2
8
modulation nmda
8
receptor function
8
situ rgcs
8
rat glaucoma
8
glaucoma rabbit
8
rabbit retinal
8
retinal nmda
8

Similar Publications

Objectives: Traumatic brain injury (TBI) is a significant cause of mortality and disability worldwide. TBI has been associated with factors such as oxidative stress, neuroinflammation, and apoptosis, which are believed to be mediated by the N-methyl-D-aspartate (NMDA)-type glutamate receptor. Two NMDA receptor antagonists, ketamine and memantine, have shown potential in mitigating the pathophysiological effects of TBI.

View Article and Find Full Text PDF

Background: Anti-NMDA receptor encephalitis is an autoimmune, antibody-mediated inflammatory disease of the brain characterized by the presence of IgG antibodies targeting the excitatory N-methyl-D-aspartate receptor (NMDAR). Previous research has established that the neonatal Fc receptor (FcRn) regulates the transport and circulation of immunoglobulins (IgG). Efgartigimod, an FcRn antagonist, has been shown to enhance patient outcomes by promoting IgG clearance, and it has exhibited substantial clinical efficacy and tolerability in the treatment of myasthenia gravis.

View Article and Find Full Text PDF

NMDA receptor ligands have therapeutic potential in neurological and psychiatric disorders. We designed ()-3-(5-thienyl)carboxamido-2-aminopropanoic acid derivatives with nanomolar agonist potencies at NMDA receptor subtypes (GluN12/A-D). These compounds are superagonists at GluN1/2C compared to glycine and partial to full agonists at GluN1/2A and GluN1/2D but display functional antagonism at GluN1/2B due to low agonist efficacy.

View Article and Find Full Text PDF

Chlorpyrifos (CPF) is a broad-spectrum organophosphate insecticide. Long-term exposure to low levels of CPF is associated with neurodevelopmental and neurodegenerative disorders. The mechanisms leading to these effects are still not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!