A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nuclear magnetic resonance and biochemical measurements of glucose utilization in the cone-dominant ground squirrel retina. | LitMetric

Purpose: To provide quantitative information on glucose utilization in cone-dominant ground squirrel retinas.

Methods: Ground squirrel eyecups were incubated in medium containing (14)C-glucose, and the production of (14)CO(2) was measured. Measurements were also made of lactic acid production (glycolysis). Nuclear magnetic resonance (NMR) was used to track metabolites generated from (13)C-1 glucose.

Results: Ground squirrel eyecups produced lactate at a high rate and exhibited normal histology. Light-adaptation reduced glycolysis by 20%. Ouabain decreased glycolysis by 25% and decreased (14)CO(2) production by 60%. Blockade of glutamate receptors had little effect on the glycolysis and (14)CO(2) produced. When metabolic responses were restricted to photoreceptors, light caused a 33% decrease in (14)CO(2) production. The rate of (14)CO(2) production was less than 10% of lactate production. Lactate was the major product formed from (13)C-glucose. Other (13)C-labeled compounds included glutamate, aspartate, glutamine, alanine, taurine, and GABA. Lactate was the only product detected in the medium bathing the ground squirrel retinas. The rod-dominant rat retina exhibited a similar pattern of metabolites formed from glucose.

Conclusions: Lactate, not CO(2), is the major product of glucose metabolism in both ground squirrel and rat retinas. Active Na(+) transport, however, depends more on ATP produced by mitochondria than by glycolysis. A relatively high fraction of ATP production from glycolysis and glucose oxidation continues in the absence of active Na(+) pumping and glutamatergic transmission. Major neurotransmitters are synthesized from the aerobic metabolism of glucose; anoxia-induced impairment in retinal synaptic transmission may be due to depletion of neurotransmitters.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.08-2004DOI Listing

Publication Analysis

Top Keywords

ground squirrel
24
14co2 production
12
nuclear magnetic
8
magnetic resonance
8
glucose utilization
8
utilization cone-dominant
8
cone-dominant ground
8
squirrel eyecups
8
production glycolysis
8
major product
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!