TNF-alpha is a potent proinflammatory cytokine, essential for initiating innate immune responses against invading microbes and a key mediator involved in the pathogenesis of acute and chronic inflammatory diseases. To identify molecules involved in the production of TNF-alpha, we used a functional gene identification method using retroviral integration-mediated mutagenesis, followed by LPS-stimulated TNF-alpha production analysis in macrophages. We found that cathepsin B, a lysosomal cysteine proteinase, was required for optimal posttranslational processing of TNF-alpha in response to the bacterial cell wall component LPS. Mouse bone marrow-derived macrophages from cathepsin B-deficient mice and macrophages treated with the cathepsin B-specific chemical inhibitor CA074 methyl ester or small interfering RNA against cathepsin B secreted significantly less TNF-alpha than wild-type or nontreated macrophages. We further showed that the inhibition of cathepsin B caused accumulation of 26-kDa pro-TNF-containing vesicles. Ectopic expression of GFP-conjugated pro-TNF further suggests that pro-TNF failed to reach the plasma membrane without intracellular cathepsin B activity. Altogether, these data suggest that intracellular cathepsin B activity is involved in the TNF-alpha-containing vesicle trafficking to the plasma membrane.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.181.1.690DOI Listing

Publication Analysis

Top Keywords

plasma membrane
12
cathepsin
8
macrophages cathepsin
8
intracellular cathepsin
8
cathepsin activity
8
macrophages
5
tnf-alpha
5
cathepsin involved
4
involved trafficking
4
trafficking tnf-alpha-containing
4

Similar Publications

Putranjiva roxburghii is an important medicinal plant utilized for remedy of female reproductive ailments. Its seed extract is being used as a uterine health booster due to the presence of several pharmaceutically important phytochemicals. However, the presence of phytochemicals in its leaf is still unexplored.

View Article and Find Full Text PDF

The roles of mitochondria in global and local intracellular calcium signalling.

Nat Rev Mol Cell Biol

January 2025

MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.

Activation of Ca channels in Ca stores in organelles and the plasma membrane generates cytoplasmic calcium ([Ca]) signals that control almost every aspect of cell function, including metabolism, vesicle fusion and contraction. Mitochondria have a high capacity for Ca uptake and chelation, alongside efficient Ca release mechanisms. Still, mitochondria do not store Ca in a prolonged manner under physiological conditions and lack the capacity to generate global [Ca] signals.

View Article and Find Full Text PDF

The Low Density Lipoprotein receptors (LDLRs) gene family includes 15 receptors: very low-density lipoprotein receptor (VLDLR), LDLR, Sorting-related receptor with A-type repeats (SORLA), and 12 LDL receptor-related proteins (LRPs): LRP1, LRP1B, LRP2, LRP3, LRP4, LRP5, LRP6, LRP8, LRP10, LRP11, LRP12, LRP13. Most of these are involved in the transduction of key signals during embryonic development and in the regulation of cholesterol homeostasis. In oviparous animals, the VLDL receptor is also known as VTGR since it facilitates the uptake of vitellogenin in ovary.

View Article and Find Full Text PDF

Plasma membrane-associated ARAF condensates fuel RAS-related cancer drug resistance.

Nat Chem Biol

January 2025

Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.

RAF protein kinases are major RAS effectors that function by phosphorylating MEK. Although all three RAF isoforms share a conserved RAS binding domain and bind to GTP-loaded RAS, only ARAF uniquely enhances RAS activity. Here we uncovered the molecular basis of ARAF in regulating RAS activation.

View Article and Find Full Text PDF

Lymphangiogenesis is vital for tissue fluid homeostasis, immune function, and lipid absorption. Abnormal lymphangiogenesis has been implicated in several diseases such as cancers, inflammatory, and autoimmune diseases. In this study, we elucidate the role of tsRNA-0032 in lymphangiogenesis and its molecular mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!