Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The NUP98-HOXD13 (NHD13) fusion gene occurs in patients with myelodysplastic syndrome (MDS) and acute nonlymphocytic leukemia (ANLL). We reported that transgenic mice expressing NHD13 develop MDS, and that more than half of these mice eventually progress to acute leukemia. The latency period suggests a requirement for at least 1 complementary event before leukemic transformation. We conducted a candidate gene search for complementary events focused on genes that are frequently mutated in human myeloid leukemia. We investigated 22 ANLL samples and found a high frequency of Nras and Kras mutations, an absence of Npm1, p53, Runx1, Kit and Flt3 mutations, and a single Cbl mutation. Our findings support a working hypothesis that predicts that ANLL cases have one mutation which inhibits differentiation, and a complementary mutation which enhances proliferation or inhibit apoptosis. In addition, we provide the first evidence for spontaneous collaborating mutations in a genetically engineered mouse model of ANLL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518902 | PMC |
http://dx.doi.org/10.1182/blood-2008-01-135186 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!