The p53 tumor suppressor is mutated in over 50% of human cancers. Mutations resulting in amino acid changes within p53 result in a loss of activity and consequent changes in expression of genes that regulate DNA repair and cell cycle progression. Replacement of p53 using protein therapy would restore p53 function in p53-deficient tumor cells, with a consequence of tumor cell death and tumor regression. p53 functions in a tetrameric form in vivo. Here, we refolded a wild-type, full-length p53 from inclusion bodies expressed in Escherichia coli as a stable tetramer. The tetrameric p53 binds to p53-specific DNA and, when transformed into a p53-deficient cancer cell line, induced apoptosis of the transformed cells. Next, using the same expression and refolding technology, we produced a stable tetramer of recombinant gonadotropin-releasing hormone-p53 fusion protein (GnRH-p53), which traverses the plasma membrane, slows proliferation, and induces apoptosis in p53-deficient, GnRH-receptor-expressing cancer cell lines. In addition, we showed a time-dependent binding and internalization of GnRH-p53 to a receptor-expressing cell line. We conclude that the GnRH-p53 fusion strategy may provide a basis for constructing an effective cancer therapeutic for patients with tumors in GnRH-receptor-positive tissue types.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-08-0078DOI Listing

Publication Analysis

Top Keywords

p53
8
tetrameric p53
8
gonadotropin-releasing hormone-p53
8
apoptosis p53-deficient
8
p53-deficient cancer
8
stable tetramer
8
cancer cell
8
cell
5
recombinant refolded
4
refolded tetrameric
4

Similar Publications

Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA.

View Article and Find Full Text PDF

Background: Metastatic prostate cancer (PCa) has much lower survival and ultimately develops castration resistance, which expects novel targets and therapeutic approaches. As a result of iron-dependent lipid peroxidation, ferroptosis triggers programmed cell death and has been associated with castration-resistant prostate cancer (CRPC).

Subjects: To better understand how ferroptosis can be used to treat CRPC, we reviewed the following: First, ferroptosis mechanisms and characteristics.

View Article and Find Full Text PDF

To investigate the functional role of S100A4 in advanced colorectal carcinoma (Ad-CRC) and locally advanced rectal carcinoma (LAd-RC) receiving neoadjuvant chemoradiotherapy (NCRT). We analyzed histopathological and immunohistochemical sections from 150 patients with Ad-CRC and 177 LAd-RC patients treated with NCRT. S100A4 knockout (KO) HCT116 cells were also used.

View Article and Find Full Text PDF

Novel anoikis-related diagnostic biomarkers for aortic dissection based on machine learning.

Sci Rep

December 2024

Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.

Aortic dissection (AD) is one of the most dangerous diseases of the cardiovascular system, which is characterized by acute onset and poor prognosis, while the pathogenesis of AD is still unclear and may affect or even delay the diagnosis of AD. Anchorage-dependent cell death (Anoikis) is a special mode of cell death, which is programmed cell death caused by normal cells after detachment from extracellular matrix (ECM) and has been widely studied in the field of oncology in recent years. In this study, we applied bioinformatics analysis, according to the results of research analysis and Gene Ontology (GO), as well as Kyoto Encyclopedia of Genes and Genomes (KEGG), finally found 3 anoikis-related genes (ARGs) based on machine learning.

View Article and Find Full Text PDF

Antiphospholipid syndrome (APS) is associated with recurrent pregnancy morbidity, yet the underlying mechanisms remain elusive. We performed multifaceted characterization of the biological and transcriptomic signatures of mouse placenta and uterine natural killer (uNK) cells in APS. Histological analysis of APS placentas unveiled placental abnormalities, including disturbed angiogenesis, occasional necrotic areas, fibrin deposition, and nucleated red blood cell enrichment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!