Dental caries is a worldwide public health problem for which Streptococcus mutans has been identified as the possible infectious etiology. In recent years nanotechnology has permitted the development of new properties of materials. The objective of this study was to compare the bactericidal and bacteriostatic effects of nanoparticles of silver, zinc oxide, and gold on S. mutans. We used the liquid dilution method to find the minimum inhibitory concentrations (MICs) and with subcultures obtained the minimum bactericidal concentrations (MBCs). For silver the results showed an average MIC of 4.86 +/- 2.71 microg/mL and MBC of 6.25 microg/mL; for zinc the MIC was 500 +/- 306.18 muicrog/mL and MBC of 500 microg/mL; the gold nanoparticles demonstrated an effect only at an initial concentration of 197 mug/mL. We established a higher antimicrobial effect against S. mutans of silver nanoparticles at lower concentrations than gold or zinc, which would allow achieving important clinical effects with a reduced toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2008.04.005DOI Listing

Publication Analysis

Top Keywords

streptococcus mutans
8
nanoparticles silver
8
silver zinc
8
zinc oxide
8
oxide gold
8
antimicrobial sensitivity
4
sensitivity streptococcus
4
mutans
4
nanoparticles
4
mutans nanoparticles
4

Similar Publications

A Pyrroloquinazoline Analogue Regulated Streptococcus mutans and Streptococcus sanguinis Dual-Species Biofilms.

Int Dent J

January 2025

School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China. Electronic address:

Objective: Selective inhibition of cariogenic bacteria is regarded as a potential strategy against caries. To assess the potential of SCH-79797, one novel promising antibiotic, in microbial equilibrium using a dual-species biofilms model of Streptococcus mutans (S. mutans) and Streptococcus sanguinis (S.

View Article and Find Full Text PDF

Surface Modifications and Antifungal Efficacy of Origanum Oil Incorporation in Denture-based Materials: An Study.

J Contemp Dent Pract

September 2024

Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil; Department of Dentistry, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands, ORCID: https://orcid.org/0000-0002-5166-8233.

Aim: This study aimed to assess if the addition of origanum oil to denture materials could decrease microorganisms counts and biofilm formation without changing their mechanical/surface properties.

Materials And Methods: A total of 66 resilient denture liner discs (SoftConfort, Dencril Comércio de Plásticos Ltda, SP, Brazil) were prepared with fixed dimensions of 10 × 3 mm for biofilm assay ( = 36) and 12 × 2 mm for sorption-solubility tests ( = 30) containing three oil concentrations - 0, 2.5 and 5%, thereby = 12 per each group samples for biofilm assay and = 10 per each group for sorption-solubility test respectively.

View Article and Find Full Text PDF

Introduction Complex interactions between cariogenic bacteria and host factors modulate dental caries. , a gram-positive facultative anaerobe plays a prominent role in the initiation of caries. The ability of to adhere to salivary enamel pellicle results in an acidic local habitat for the organism.

View Article and Find Full Text PDF

Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.

View Article and Find Full Text PDF

Background: The increasing prevalence of antibiotic-resistant bacteria necessitates exploring nanotechnology as a potential solution for microbial elimination.

Objectives: This study aimed to investigate the antimicrobial and antioxidant effects of silver nanoparticles synthesized using aqueous extract from the Ephedra gerardiana (E. gerardiana) plant (EG@AgNPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!