The enteric nervous system (ENS) derives from migratory neural crest cells that colonize the developing gut tube, giving rise to an integrated network of neurons and glial cells, which together regulate important aspects of gut function, including coordinating the smooth muscle contractions of the gut wall. The absence of enteric neurons in portions of the gut (aganglionosis) is the defining feature of Hirschsprung's disease (HSCR) and has been replicated in a number of mouse models. Mutations in the RET tyrosine kinase account for over half of familial cases of HSCR and mice mutant for Ret exhibit aganglionosis. RET exists in two main isoforms, RET9 and RET51 and studies in mouse have shown that RET9 is sufficient to allow normal development of the ENS. In the last several years, zebrafish has emerged as a model of vertebrate ENS development, having been supported by a number of demonstrations of conservation of gene function between zebrafish, mouse and human. In this study we further analyse the potential similarities and differences between ENS development in zebrafish, mouse and human. We demonstrate that zebrafish Ret is required in a dose-dependent manner to regulate colonization of the gut by neural crest derivatives, as in human. Additionally, we show that as in mouse and human, zebrafish ret is produced as two isoforms, ret9 and ret51. Moreover, we show that, as in mouse, the Ret9 isoform is sufficient to support colonization of the gut by enteric neurons. Finally, we identify zebrafish orthologues of genes previously identified to be expressed in the mouse ENS and demonstrate that these genes are expressed in the developing zebrafish ENS, thereby identifying useful ENS markers in this model organism. These studies reveal that the similarities between gene expression and gene function across vertebrate species is more extensive than previously appreciated, thus supporting the use of zebrafish as a general model for vertebrate ENS development and the use of zebrafish genetic screens as a way to identify candidate genes mutated in HSCR cases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mod.2008.04.006DOI Listing

Publication Analysis

Top Keywords

ens development
12
mouse human
12
zebrafish
9
gene expression
8
enteric nervous
8
nervous system
8
vertebrate species
8
ens
8
neural crest
8
enteric neurons
8

Similar Publications

Phage-mediated intercellular CRISPRi for biocomputation in bacterial consortia.

Nucleic Acids Res

December 2024

Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.

Coordinated actions of cells in microbial communities and multicellular organisms enable them to perform complex tasks otherwise difficult for single cells. This has inspired biological engineers to build cellular consortia for larger circuits with improved functionalities while implementing communication systems for coordination among cells. Here, we investigate the signalling dynamics of a phage-mediated synthetic DNA messaging system and couple it with CRISPR interference to build distributed circuits that perform logic gate operations in multicellular bacterial consortia.

View Article and Find Full Text PDF

Data-driven material modeling based on the Constitutive Relation Error.

Adv Model Simul Eng Sci

December 2024

CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS-Laboratoire de Mécanique Paris-Saclay, Université Paris-Saclay, 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France.

Prior to any numerical development, the paper objective is to answer first to a fundamental question: what is the mathematical form of the most general data-driven constitutive model for stable materials, taking maximum account of knowledge from physics and materials science? Here we restrict ourselves to elasto-(visco-)plastic materials under the small displacement assumption. The experimental data consists of full-field measurements from a family of tested mechanical structures. In this framework, a general data-driven approach is proposed to learn the constitutive model (in terms of thermodynamic potentials) from data.

View Article and Find Full Text PDF

Diatom phytochromes integrate the underwater light spectrum to sense depth.

Nature

December 2024

CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR7141, Paris, France.

Aquatic life is strongly structured by the distribution of light, which, besides attenuation in intensity, exhibits a continuous change in the spectrum with depth. The extent to which these light changes are perceived by phytoplankton through photoreceptors is still inadequately known. We addressed this issue by integrating functional studies of diatom phytochrome (DPH) photoreceptors in model species with environmental surveys of their distribution and activity.

View Article and Find Full Text PDF

Paleo-evo-devo implications of a revised conceptualization of enameloids and enamels.

Biol Rev Camb Philos Soc

December 2024

UMR 7207 Centre de recherche en paléontologie - Paris (CR2P), Sorbonne Université, Muséum national d'Histoire naturelle, CNRS, 43 rue Buffon, Paris, 75005, France.

Understanding the origin and evolution of the mineralized skeleton is crucial for unravelling vertebrate history. However, several limitations hamper our progress. The first obstacle is the lack of uniformity and clarity in the literature for the definition of the tissues of concern, especially of enameloid(s) and enamel(s), resulting in ambiguous terminology and inconsistencies among studies.

View Article and Find Full Text PDF

Low latency carbon budget analysis reveals a large decline of the land carbon sink in 2023.

Natl Sci Rev

December 2024

Laboratoire des Sciences du Climat et de l'Environnement, University Paris Saclay CEA CNRS, Gif sur Yvette 91191, France.

In 2023, the CO growth rate was 3.37 ± 0.11 ppm at Mauna Loa, which was 86% above that of the previous year and hit a record high since observations began in 1958, while global fossil fuel CO emissions only increased by 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!