Polyaromatic hydrocarbons (PAHs) are organic pollutants mostly derived from the processing and combustion of fossil fuels and cause human health hazards. In the present study a marine biosurfactant producing strain of Bacillus circulans was used to increase the bioavailability and consequent degradation of a model polyaromatic hydrocarbon, anthracene. Although the organism could not utilize anthracene as the sole carbon source, it showed better growth and biosurfactant production in an anthracene supplemented glycerol mineral salts medium (AGlyMSM) compared to a normal glycerol mineral salts medium (GlyMSM). The biosurfactant product showed high degree of emulsification of various hydrocarbons. Analysis by gas chromatography (GC), high performance thin layer chromatography (HPTLC) and Fourier transform infrared spectroscopy (FTIR) showed that the biosurfactant could effectively entrap and solubilize PAH. Thin layer chromatographic analysis showed that anthracene was utilized as a carbon substrate for the production of biosurfactant. Thus organic pollutant anthracene was metabolized and converted to biosurfactants facilitating its own bioremediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2008.05.015DOI Listing

Publication Analysis

Top Keywords

model polyaromatic
8
polyaromatic hydrocarbon
8
biosurfactant producing
8
glycerol mineral
8
mineral salts
8
salts medium
8
thin layer
8
biosurfactant
6
anthracene
5
improved bioavailability
4

Similar Publications

The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants.

View Article and Find Full Text PDF

MsrB1 is a thiol-dependent enzyme that reduces protein methionine--sulfoxide and regulates inflammatory response in macrophages. Therefore, MsrB1 could be a promising therapeutic target for the control of inflammation. To identify MsrB1 inhibitors, we construct a redox protein-based fluorescence biosensor composed of MsrB1, a circularly permutated fluorescent protein, and the thioredoxin1 in a single polypeptide chain.

View Article and Find Full Text PDF

Background: Asthma and allergic diseases are among the common causes of morbidity and mortality globally. Various environmental pollutants are linked to the development of asthma and allergic diseases. Evidence on the role of oxidative stress and immune markers in the association of environmental pollutants with asthma and allergy is scant.

View Article and Find Full Text PDF

The application of AI to analytical and separative sciences is a recent challenge that offers new perspectives in terms of data prediction. In this work, we report an AI-based software, named Chrompredict 1.0, which based on chromatographic data of a novel mesogenic crown ether stationary phase (CESP).

View Article and Find Full Text PDF
Article Synopsis
  • * A study analyzed 19 different BBFs and found that most contaminants were below EU safety thresholds, though some samples, particularly from pyrolyzed sewage sludge, exceeded acceptable levels for certain pollutants.
  • * Overall, the risk of long-term contamination in agricultural soils from these BBFs appears low, with studies showing decreasing trends in hazardous substance concentrations over time.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!