The structurally novel bifunctional ligands C-NETA and C-NE3TA, each possessing both acyclic and macrocyclic moieties, were prepared and evaluated as potential chelates for radioimmunotherapy (RIT) and targeted magnetic resonance imaging (MRI). Heptadentate C-NE3TA was fortuitously discovered during the preparation of C-NETA. An optimized synthetic method to C-NETA and C-NE3TA including purification of the polar and tailing reaction intermediates, tert-butyl C-NETA (2) and tert-butyl C-NE3TA (3) using semiprep HPLC was developed. The new Gd(III) complexes of C-NETA and C-NE3TA were prepared as contrast enhancement agents for use in targeted MRI. The T 1 relaxivity data indicate that Gd(C-NETA) and Gd(C-NE3TA) possess higher relaxivity than Gd(C-DOTA), a bifunctional version of a commercially available MRI contrast agent; Gd(DOTA). C-NETA and C-NE3TA were radiolabeled with (177)Lu, (90)Y, (203)Pb, (205/6)Bi, and (153)Gd; and in vitro stability of the radiolabeled corresponding complexes was assessed in human serum. The in vitro studies indicate that the evaluated radiolabeled complexes were stable in serum for 11 days with the exception being the (203)Pb complexes of C-NETA and C-NE3TA, which dissociated in serum. C-NETA and C-NE3TA radiolabeled (177)Lu, (90)Y, or (153)Gd complexes were further evaluated for in vivo stability in athymic mice and possess excellent or acceptable in vivo biodistribution profile. (205/6)Bi- C-NE3TA exhibited extremely rapid blood clearance and low radioactivity level at the normal organs, while (205/6)Bi- C-NETA displayed low radioactivity level in the blood and all of the organs except for the kidney where relatively high renal uptake of radioactivity is observed. C-NETA and C-NE3TA were further modified for conjugation to the monoclonal antibody Trastuzumab.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2497452PMC
http://dx.doi.org/10.1021/bc800050xDOI Listing

Publication Analysis

Top Keywords

c-neta c-ne3ta
28
c-neta
10
c-ne3ta
10
bifunctional ligands
8
targeted mri
8
complexes c-neta
8
c-ne3ta radiolabeled
8
radiolabeled 177lu
8
177lu 90y
8
low radioactivity
8

Similar Publications

Synthesis and comparative biological evaluation of bifunctional ligands for radiotherapy applications of (90)Y and (177)Lu.

Bioorg Med Chem

March 2015

Chemistry Division, Department of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St, LS 182, Chicago, IL 60616, United States.

Zevalin® is an antibody-drug conjugate radiolabeled with a cytotoxic radioisotope ((90)Y) that was approved for radioimmunotherapy (RIT) of B-cell non-Hodgkin's lymphoma. A bifunctional ligand that displays favorable complexation kinetics and in vivo stability is required for effective RIT. New bifunctional ligands 3p-C-DE4TA and 3p-C-NE3TA for potential use in RIT were efficiently prepared by the synthetic route based on regiospecific ring opening of aziridinium ions with prealkylated triaza- or tetraaza-backboned macrocycles.

View Article and Find Full Text PDF

Novel bimodal bifunctional ligands for radioimmunotherapy and targeted MRI.

Bioconjug Chem

July 2008

Chemistry Division, Biological, Chemical, and Physical Sciences Department, Illinois Institute of Technology, Chicago, Illinois 60616, USA.

The structurally novel bifunctional ligands C-NETA and C-NE3TA, each possessing both acyclic and macrocyclic moieties, were prepared and evaluated as potential chelates for radioimmunotherapy (RIT) and targeted magnetic resonance imaging (MRI). Heptadentate C-NE3TA was fortuitously discovered during the preparation of C-NETA. An optimized synthetic method to C-NETA and C-NE3TA including purification of the polar and tailing reaction intermediates, tert-butyl C-NETA (2) and tert-butyl C-NE3TA (3) using semiprep HPLC was developed.

View Article and Find Full Text PDF

Synthesis and evaluation of novel polyaminocarboxylate-based antitumor agents.

J Med Chem

April 2008

Chemistry Division, Biological, Chemical, and Physical Sciences Department, Illinois Institute of Technology, Chicago, Illinois, USA.

Iron depletion, using iron chelators targeting transferrin receptor (TfR) and ribonucleotide reductase (RR), is proven to be effective in the treatment of cancer. We synthesized and evaluated novel polyaminocarboxylate-based chelators NETA, NE3TA, and NE3TA-Bn and their bifunctional versions C-NETA, C-NE3TA, and N-NE3TA for use in iron depletion tumor therapy. The cytotoxic activities of the novel polyaminocarboxylates were evaluated in the HeLa and HT29 colon cancer cell lines and compared to the clinically available iron depletion agent DFO and the frequently explored polyaminocarboxylate DTPA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!