Background: The generation of inflammatory mediators from monocytes activated by HLA Class II antibodies is thought to play important roles in the etiology of nonhemolytic transfusion reactions. Increased permeability of endothelial cells contributes to the pathogenesis of rash, urticaria, angioedema, and pulmonary edema, which are symptoms of transfusion reactions.

Study Design And Methods: We investigated whether inflammatory mediators released from monocytes upon stimulation by HLA Class II antibodies could increase endothelial permeability. Human endothelial cell monolayers were incubated with cell-free supernatants of peripheral blood mononuclear cells (PBMNCs) stimulated with HLA Class II antibody-containing plasma (anti-HLA-DR plasma), which has been implicated in severe nonhemolytic transfusion reactions. The permeability of endothelial cells to dextran was measured.

Results: The supernatants of PBMNCs stimulated with the anti-HLA-DR plasma in corresponding antigen-antibody combinations were able to increase endothelial permeability. At least 3 hours of exposure of PBMNCs to anti-HLA-DR plasma was required to produce a supernatant that could induce a significant increase in permeability. Simultaneous addition of tumor necrosis factor alpha (TNF-alpha) and interleukin 1 beta (IL-1 beta) neutralizing antibodies to the activated PBMNC supernatant significantly reduced the increase in permeability. Treatment of the endothelial cells with an inhibitor of nuclear factor kappaB (NF-kappaB), but not inhibitors of apoptosis, significantly prevented the increase in permeability.

Conclusion: Both TNF-alpha and IL-1 beta, generated from PBMNCs by anti-HLA-DR plasma in a corresponding antigen-antibody-dependent manner, led to an increase in endothelial permeability. The activation of monocytes by the HLA-DR antibodies and the resultant inflammatory mediators could contribute to the pathogenesis of rash, urticaria, angioedema, and pulmonary edema after transfusion.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1537-2995.2008.01809.xDOI Listing

Publication Analysis

Top Keywords

endothelial permeability
16
hla class
16
anti-hla-dr plasma
16
inflammatory mediators
12
endothelial cells
12
increase endothelial
12
endothelial
8
peripheral blood
8
blood mononuclear
8
mononuclear cells
8

Similar Publications

Involvement of ATF6 in Octreotide-Induced Endothelial Barrier Enhancement.

Pharmaceuticals (Basel)

November 2024

School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.

: Endothelial hyperpermeability is the hallmark of severe disease, including sepsis and acute respiratory syndrome (ARDS). The development of medical countermeasures to treat the corresponding illness is of utmost importance. Synthetic somatostatin analogs (SSA) are FDA-approved drugs prescribed in patients with neuroendocrine tumors, and they act via growth hormone (GH) suppression.

View Article and Find Full Text PDF

Spinal cord injury (SCI) disrupts the blood-spinal cord barrier (BSCB) exacerbating damage by allowing harmful substances and immune cells to infiltrate spinal neural tissues from the vasculature. This leads to inflammation, oxidative stress, and impaired axonal regeneration. The BSCB, essential for maintaining spinal cord homeostasis, is structurally similar to the blood-brain barrier.

View Article and Find Full Text PDF

Endothelial cells (ECs) are crucial for vascular health, regulating blood flow, nutrient exchange, and modulating immune responses and inflammation. The impairment of these processes causes the endothelial dysfunction (ED) characterized by oxidative stress, inflammation, vascular permeability, and extracellular matrix remodeling. While primary ECs have been widely used to study ED in vitro, their limitations-such as short lifespan and donor variability-pose challenges.

View Article and Find Full Text PDF

GPR68 Mediates Lung Endothelial Dysfunction Caused by Bacterial Inflammation and Tissue Acidification.

Cells

December 2024

Division of Pulmonary and Critical Care, Department of Medicine, UMSOM Lung Biology Program, University of Maryland School of Medicine, 20 Penn Street, HSF-2, Room S143, Baltimore, MD 21201, USA.

Tissue acidification resulting from dysregulated cellular bioenergetics accompanies various inflammatory states. GPR68, along with other members of proton-sensing G protein-coupled receptors, responds to extracellular acidification and has been implicated in chronic inflammation-related diseases such as ischemia, cancer, and colitis. The present study examined the role of extracellular acidification on human pulmonary endothelial cell (EC) permeability and inflammatory status per se and investigated potential synergistic effects of acidosis on endothelial dysfunction caused by bacterial lipopolysaccharide (LPS, ).

View Article and Find Full Text PDF

Adropin, a secreted peptide hormone identified in 2008, plays a significant role in regulating energy homeostasis, glucose metabolism, and lipid metabolism. Its expression is linked to dietary macronutrient intake and is influenced by metabolic syndrome, obesity, diabetes, and cardiovascular diseases. Emerging evidence suggests that adropin might be a biomarker for various conditions, including metabolic syndrome, coronary artery disease, and hypertensive disorders complicating pregnancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!