Here, the aim was to understand the cellular and genetic basis of the Triticum monococcum-Mycosphaerella graminicola interaction. Testing for 5 yr under UK field conditions revealed that all 24 T. monococcum accessions exposed to a high level of natural inocula were fully resistant to M. graminicola. When the accessions were individually inoculated in the glasshouse using an attached leaf seeding assay and nine previously characterized M. graminicola isolates, fungal sporulation was observed in only three of the 216 interactions examined. Microscopic analyses revealed that M. graminicola infection was arrested at four different stages post-stomatal entry. When the inoculated leaves were detached 30 d post inoculation and incubated at 100% humidity, abundant asexual sporulation occurred within 5 d in a further 61 interactions. An F(2) mapping population generated from a cross between T. monococcum accession MDR002 (susceptible) and MDR043 (resistant) was inoculated with the M. graminicola isolate IPO323. Both resistance and in planta fungal growth were found to be controlled by a single genetic locus designated as TmStb1 which was linked to the microsatellite locus Xbarc174 on chromosome 7A(m). Exploitation of T. monococcum may provide new sources of resistance to septoria tritici blotch disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1469-8137.2008.02526.x | DOI Listing |
New Phytol
November 2008
Department of Plant Pathology and Microbiology, Centre for Sustainable Pest and Disease Management, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK.
Here, the aim was to understand the cellular and genetic basis of the Triticum monococcum-Mycosphaerella graminicola interaction. Testing for 5 yr under UK field conditions revealed that all 24 T. monococcum accessions exposed to a high level of natural inocula were fully resistant to M.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!