Real-time imaging of single-molecule fluorescence with a zero-mode waveguide (ZMW) was achieved. With modification of the ZMW geometry, the signal-to-background ratio is twice that obtainable with a conventional ZMW. The improved signal-to-background ratio makes it possible to visualize individual binding-release events between chaperonin GroEL and cochaperonin GroES at a concentration of 5 microM. Two rate constants representing two-timer kinetics in the release of GroES from GroEL were measured with the ZMW, and the measurements agreed well with those made with a total internal reflection fluorescence microscopy. These results indicate that the novel ZMW makes feasible the direct observation of protein-protein interaction at an intracellular concentration in real time.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac800726gDOI Listing

Publication Analysis

Top Keywords

real-time imaging
8
imaging single-molecule
8
single-molecule fluorescence
8
fluorescence zero-mode
8
zero-mode waveguide
8
protein-protein interaction
8
signal-to-background ratio
8
zmw
5
waveguide analysis
4
analysis protein-protein
4

Similar Publications

MR imaging of proton beam-induced oxygen depletion.

Med Phys

January 2025

OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.

Background: Previous studies have shown that in-beam magnetic resonance imaging (MRI) can be used to visualize a proton beam during the irradiation of liquid-filled phantoms. The beam energy- and current-dependent local image contrast observed in water was identified to be predominantly caused by beam-induced buoyant convection and associated flow effects. Besides this flow dependency, the MR signal change was found to be characterized by a change in the relaxation time of water, hinting at a radiochemical contribution, which was hypothesized to lie in oxygen depletion-evoked relaxation time lengthening.

View Article and Find Full Text PDF

Swine are increasingly utilized in cardiovascular research due to their anatomical and physiological similarities to humans, particularly for studying diastolic dysfunction. While MRI offers excellent structural imaging, echocardiography provides superior real-time assessment of diastolic parameters. To address the lack of standardized methods and reduce variability across studies, we present a comprehensive guide for performing echocardiography in Yorkshire pigs, detailing anatomical considerations, equipment requirements, and technical approaches.

View Article and Find Full Text PDF

Understanding the dynamic pathophysiology of diseases in the lung, such as asthma and chronic asthma, chronic obstructive pulmonary disease, and lung cancer, is crucial for the treatment, analysis, and outcome of these diseases. Unlike other traditional models, we suggest a protocol that is sustainable and reproducible and offers different analysis methods while maintaining in vivo lung architecture and immune dynamics. This protocol allows one to study the pathophysiological changes, including changes to the immune cells, cytokines, and mediators, in 30 precision-cut lung slices from a single murine lung.

View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) fungi engage in symbiotic relationships with plants, influencing their phosphate (Pi) uptake pathways, metabolism, and root cell physiology. Despite the significant role of Pi, its distribution and response dynamics in mycorrhizal roots remain largely unexplored. While traditional techniques for Pi measurement have shed some light on this, real-time cellular-level monitoring has been a challenge.

View Article and Find Full Text PDF

Introduction: Weeds are a major factor affecting crop yield and quality. Accurate identification and localization of crops and weeds are essential for achieving automated weed management in precision agriculture, especially given the challenges in recognition accuracy and real-time processing in complex field environments. To address this issue, this paper proposes an efficient crop-weed segmentation model based on an improved UNet architecture and attention mechanisms to enhance both recognition accuracy and processing speed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!