Catalyzed and uncatalyzed rearrangement reactions of terpenoids play a major role in laboratory and industrial-scale synthesis of fine chemicals. Herein, we present our results on the thermally induced isomerization of pinane (1). Investigation of the thermal behavior of (+)-cis- (1 a) and (-)-trans-pinane (1 b) in a flow-type reactor reveals significant differences in both reactivity and selectivity concerning the formation of (-)-beta-citronellene (2) and (+)-isocitronellene (3) as main products. Possible explanations for these results are discussed on the basis of reaction mechanism and ground-state geometries for 1 a and 1 b. To identify side reactions caused from ene cyclizations of 2 and 3, additional pyrolysis experiments were conducted that enabled the identification of almost all compounds in the network of C(10)H(18)-hydrocarbon products formed from 1.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200800298DOI Listing

Publication Analysis

Top Keywords

+-cis- --trans-pinane
8
--beta-citronellene +-isocitronellene
8
thermal isomerization
4
isomerization +-cis-
4
--trans-pinane leading
4
leading --beta-citronellene
4
+-isocitronellene catalyzed
4
catalyzed uncatalyzed
4
uncatalyzed rearrangement
4
rearrangement reactions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!