Polyethylene glycol as a novel resist and sacrificial material for generating positive and negative nanostructures.

Small

Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA.

Published: July 2008

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243386PMC
http://dx.doi.org/10.1002/smll.200701089DOI Listing

Publication Analysis

Top Keywords

polyethylene glycol
4
glycol novel
4
novel resist
4
resist sacrificial
4
sacrificial material
4
material generating
4
generating positive
4
positive negative
4
negative nanostructures
4
polyethylene
1

Similar Publications

Engineered living materials (ELM) is a new frontier in materials research that uses living microorganisms to augment nonliving materials with lifelike capabilities, such as responding to external stimuli. This is achieved by genetically programming the microorganisms in an ELM with stimulus-sensing modules. A popular stimulus to remotely control various ELM functions is light, which has been realized thanks to optogenetics.

View Article and Find Full Text PDF

Submicron particulate matter (PM) can penetrate deeply into human tissue, posing a serious threat to human health. However, the electrostatic charge of commercial respirators is easily dissipated, making it difficult to maintain long-term filtration. Herein, a hierarchically porous filter based on nanofibers with accessible porosity and particulate-attractive surfaces, achieving significant filtration performance is developed through polarity-driven interactions.

View Article and Find Full Text PDF

Tannic acid (TA), as a plant polyphenol, has many active sites for chelation with metals, so TA-oligomers (TA-Olig) were used for the first time as ligands on the surface of Ce-Mn-LDH to prepare the layered double hydroxide-based metal-organic framework (Ce-Mn-LDH@CPTMS@TA-Olig@Co-MOF = E) nanocomposite. In this regard, a homogeneous water/ethanol solution was prepared by sol-gel method using polyethylene glycol and ammonia solution, and then TA was converted into a set of oligomers in the presence of formaldehyde. In the next step, Ce-Mn-LDH was prepared in a ratio of 1 : 4 of Ce to Mn, modified with 3-chloropropylmethoxysilane, functionalized by TA-Olig, and then cobalt salt was used to prepare E.

View Article and Find Full Text PDF

FA-PEG Modified ZIF(Mn) Nanoparticles Loaded with Baicalin for Imaging-Guided Treatment of Melanoma in Mice.

Int J Nanomedicine

December 2024

Department of Dermatology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, 261031, People's Republic of China.

Background: Melanoma is an aggressive skin tumor with limited therapeutic options due to rapid proliferation, early metastasis, and poor prognosis. Baicalin (BA), a natural flavonoid, shows promise in inducing ferroptosis and apoptosis but faces challenges of poor solubility and bioavailability. To address these issues, we developed a multifunctional drug delivery system: manganese-doped ZIF-8 nanoparticles (ZIF(Mn)) loaded with BA and modified with folic acid (FA) and polyethylene glycol (PEG).

View Article and Find Full Text PDF

Global research on nanomaterials for liver cancer from 2004 to 2023: a bibliometric and visual analysis.

Discov Oncol

December 2024

Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China.

Background: Primary liver cancer, particularly hepatocellular carcinoma, is one of the most common gastrointestinal cancers. An increasing number of studies indicate that nanomaterials play a significant role in the diagnosis and treatment of liver cancer. However, despite the extensive and diverse research on nanomaterials and liver cancer, bibliometric studies in this field have not yet been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!