A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deciphering the proteomic profile of Mycobacterium leprae cell envelope. | LitMetric

The complete sequence of the Mycobacterium leprae genome, an obligate intracellular pathogen, shows a dramatic reduction of functional genes, with a coding capacity of less than 50%. Despite this massive gene decay, the leprosy bacillus has managed to preserve a minimal gene set, most of it shared with Mycobacterium tuberculosis, allowing its survival in the host with ensuing pathological manifestations. Thus, the identification of proteins that are actually expressed in vivo by M. leprae is of high significance in understanding obligate, intracellular mycobacterial pathogenesis. In this study, a high-throughput proteomic approach was undertaken resulting in the identification of 218 new M. leprae proteins. Of these, 60 were in the soluble/cytosol fraction, 98 in the membrane and 104 in the cell wall. Although several proteins were identified in more than one subcellular fraction, the majority were unique to one. As expected, a high percentage of these included enzymes responsible for lipid biosynthesis and degradation, biosynthesis of the major components of the mycobacterial cell envelope, proteins involved in transportation across lipid barriers, and lipoproteins and transmembrane proteins with unknown functions. The data presented in this study contribute to our understanding of the in vivo composition and physiology of the mycobacterial cell envelope, a compartment known to play a major role in bacterial pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200700971DOI Listing

Publication Analysis

Top Keywords

cell envelope
12
mycobacterium leprae
8
obligate intracellular
8
mycobacterial cell
8
proteins
5
deciphering proteomic
4
proteomic profile
4
profile mycobacterium
4
leprae
4
cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!