The aim of our study was to analyze the action of zoledronic acid on MG-63 human osteosarcoma cells. The proliferation of MG-63 cells was inhibited by either continuous or pulsatile exposures of zoledronic acid in a dose-dependent manner (10-250 microM). Zoledronic acid did not produce evidence of MG-63 cell death when administered at 100 mM for 48 hours, but only after exposure of 96 hours. Zoledronic acid (100 microM) increased the distribution of MG-63 cells in G0/G1 phase, however, it did not increase the adriamycin-induced apoptosis. In addition, zoledronic acid action was partially neutralized by exogenous administration of geranylgeranyl pyrophosphate (GGPP), but not by farnesyl pyrophosphate (FPP). Furthermore, zoledronic acid resulted in the attenuation of the prenylated form of Ras. Zoledronic acid and EDTA increased fluorescence of Fluo-3 loaded MG-63 cells in a similar pattern. This increase was owing to the release of Ca2+ from intracellular stores since zoledronic acid failed to reveal such a change to intracellular Ca2+ when cells were previously treated with 1 mM caffeine. Moreover, zoledronic acid significantly decreased the expression of estrogen receptor alpha (ERalpha) whereas it did not change significantly the expression of estrogen receptor beta (ERbeta) in MG-63 cells. These data suggest that zoledronic acid can control the proliferation and the differentiation of osteosarcoma-like cells.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-2008-1078753DOI Listing

Publication Analysis

Top Keywords

zoledronic acid
44
mg-63 cells
16
zoledronic
11
acid
11
action zoledronic
8
cells
8
osteosarcoma cells
8
expression estrogen
8
estrogen receptor
8
mg-63
7

Similar Publications

Background: Uveitis is a rare ocular adverse reaction of zoledronic acid, the specific clinical features are not clarified. This study was to investigate the clinical features of zoledronic acid-induced uveitis and provide reference for rational use of zoledronic acid.

Methods: We collected clinical data on zoledronic acid-induced uveitis for retrospective analysis by searching Chinese and English data up to October 31, 2024.

View Article and Find Full Text PDF

Hypophosphatasia (HPP) is a congenital bone disease caused by tissue-nonspecific mutations in the alkaline phosphatase gene. It is classified into six types: severe perinatal, benign prenatal, infantile, pediatric, adult, and odonto. HPP with femoral hypoplasia on fetal ultrasonography, seizures, or early loss of primary teeth can be easily diagnosed.

View Article and Find Full Text PDF

Osteoporosis Caused by Monoallelic Variant of WNT1 Gene in Four Pediatric Patients.

Am J Med Genet A

January 2025

Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China.

Pediatric patients of autosomal dominant early onset osteoporosis conferred by heterozygous mutation in the WNT1 (OMIM: 615221) were rarely reported, and therapy in pediatrics is relatively inexperienced. The clinical and genotypic characteristics and treatment process of four children with osteoporosis caused by WNT1 monoallelic variation were analyzed. The patients admitted from June 2023 to January 2024.

View Article and Find Full Text PDF

Bisphosphonate-mineralized nano-IFNγ suppresses residual tumor growth caused by incomplete radiofrequency ablation through metabolically remodeling tumor-associated macrophages.

Theranostics

January 2025

Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Radiofrequency ablation (RFA), as a minimally invasive surgery strategy based on local thermal-killing effect, is widely used in the clinical treatment of multiple solid tumors. Nevertheless, RFA cannot achieve the complete elimination of tumor lesions with larger burden or proximity to blood vessels. Incomplete RFA (iRFA) has even been validated to promote residual tumor growth due to the suppressive tumor immune microenvironment (TIME).

View Article and Find Full Text PDF

Osteoporosis (OP) is a chronic inflammatory bone disease characterized by reduced bone structure and strength, leading to increased fracture risk. Effective therapies targeting both bone and cartilage are limited. This study compared the therapeutic effects of extracorporeal shockwave therapy (ESWT), bisphosphonate (Aclasta), and human Wharton jelly-derived mesenchymal stem cells (WJMSCs) in a rat model of OP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!