Cyclopamine inhibition of human breast cancer cell growth independent of Smoothened (Smo).

Breast Cancer Res Treat

Lester and Sue Smith Breast Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.

Published: June 2009

Altered hedgehog signaling is implicated in the development of approximately 20-25% of all cancers, especially those of soft tissues. Genetic evidence in mice as well as immunolocalization studies in human breast cancer specimens suggest that deregulated hedgehog signaling may contribute to breast cancer development. Indeed, two recent studies demonstrated that anchorage-dependent growth of some human breast cancer cell lines is impaired by cyclopamine, a potent hedgehog signaling antagonist targeting the Smoothened (SMO) protein. However, specificity of cyclopamine at the dosage required for growth inhibition (> or =10 microM) remained an open question. In this paper we demonstrate that hedgehog signaling antagonists, including cyclopamine, and a second compound, CUR0199691, can inhibit growth of estrogen receptor (ER)-positive and ER-negative tumorigenic breast cancer cells at elevated doses. However, our results indicate that, for most breast cancer cell lines, growth inhibition by these compounds can be independent of detectable Smo gene expression. Rather, our results suggest that cyclopamine and CUR0199691 have unique secondary molecular targets at the dosages required for growth inhibition that are unrelated to hedgehog signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5300001PMC
http://dx.doi.org/10.1007/s10549-008-0093-3DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
hedgehog signaling
20
human breast
12
cancer cell
12
growth inhibition
12
smoothened smo
8
cell lines
8
required growth
8
breast
6
cancer
6

Similar Publications

This study utilizes single-cell RNA sequencing data to reveal the transcriptomic characteristics of breast cancer and normal epithelial cells. Nine significant cell populations were identified through stringent quality control and batch effect correction. Further classification of breast cancer epithelial cells based on the PAM50 method and clinical subtypes highlighted significant heterogeneity between triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC).

View Article and Find Full Text PDF

In the past few years, three protein molecules-USP53, NPY2R, and DCTN1-AS1-have garnered significant attention in scientific research due to their potential implications in tumor development. Mass spectrometry and proteomics techniques were used to analyze the three-dimensional structure of these protein molecules and predict their active sites and functional domains. The effects of USP53, NPY2R and DCTN1-AS1 on biological behavior of tumor cells were studied by constructing gene knockout and overexpression cell models.

View Article and Find Full Text PDF

Delays in chemotherapy and radiotherapy of breast cancer during COVID-19 pandemic.

J Infect Public Health

January 2025

Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Department of Community and Family Medicine, School of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O Box: 14665-354, Tehran 1449614535, Iran.

Background: During the COVID-19 pandemic, hospitals were overwhelmed with infected patients, leading to a disruption in the delivery of services. Patients with cancer, including breast cancer, rely on timely treatment, as delays can reduce survival rates. In this study, we investigated delays in treatment and the factors contributing to delays in chemotherapy and radiotherapy for these patients.

View Article and Find Full Text PDF

Molecularly manipulating pyrazinoquinoxaline derivatives to construct NIR-II AIEgens for multimodal phototheranostics of breast cancer bone metastases.

Biomaterials

January 2025

Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China. Electronic address:

Multimodal phototheranostics on the basis of single molecular species shows inexhaustible and vigorous vitality, particularly those emit fluorescence in the second near-infrared window (NIR-II), the construction of such exceptional molecules nonetheless retains formidably challenging. In view of the undiversified molecular skeletons and insufficient phototheranostic outputs of previously reported NIR-II fluorophores, herein, electron acceptor engineering based on heteroatom-inserted rigid-planar pyrazinoquinoxaline was manipulated to fabricate aggregation-induced emission (AIE)-featured NIR-II counterparts with donor-acceptor-donor (D-A-D) architecture. Systematical investigations substantiated that one of those synthesized AIE molecules, namely 4TPQ, incorporating a fused thiophene acceptor, synchronously exhibited high molar absorptivity (ε), NIR-II emission, typical AIE tendency, significant reactive oxygen species (ROS) generation, and high photothermal conversion efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!