Proteomic profiling has emerged as a useful tool for identifying tissue alterations in disease states including malignant transformation. The aim of this study was to reveal expression profiles associated with the highly motile/invasive ovarian cancer cell phenotype. Six ovarian cancer cell lines were subjected to proteomic characterization using multidimensional protein identification technology (MudPIT), and evaluated for their motile/invasive behavior, so that these parameters could be compared. Within whole cell extracts of the ovarian cancer cells, MudPIT identified proteins that mapped to 2245 unique genes. Western blot analysis for selected proteins confirmed the expression profiles revealed by MudPIT, demonstrating the fidelity of this high-throughput analysis. Unsupervised cluster analysis partitioned the cell lines in a manner that reflected their motile/invasive capacity. A comparison of protein expression profiles between cell lines of high (group 1) versus low (group 2) motile/invasive capacity revealed 300 proteins that were differentially expressed, of which 196 proteins were significantly upregulated in group 1. Protein network and KEGG pathway analysis indicated a functional interplay between proteins up-regulated in group 1 cells, with increased expression of several key members of the actin cytoskeleton, extracellular matrix (ECM) and focal adhesion pathways. These proteomic expression profiles can be utilized to distinguish highly motile, aggressive ovarian cancer cells from lesser invasive ones, and could prove to be essential in the development of more effective strategies that target pivotal cell signaling pathways used by cancer cells during local invasion and distant metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b717542fDOI Listing

Publication Analysis

Top Keywords

ovarian cancer
20
cancer cells
16
expression profiles
16
cell lines
12
multidimensional protein
8
protein identification
8
identification technology
8
technology mudpit
8
cancer cell
8
motile/invasive capacity
8

Similar Publications

Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.

View Article and Find Full Text PDF

Introduction: Ovarian Cancer (OC) was known for its high mortality rate among gynecological malignancies, often resulting in a poor prognosis. This study sought to identify prognostic necroptosis-related long non-coding RNAs (lncRNAs) (NRlncRNAs) with prognostic potential and to construct a reliable risk prediction model for OC patients.

Method: The transcriptome and clinic data were sourced from TCGA and GTEx databases.

View Article and Find Full Text PDF

We report a case showing that lorlatinib is effective in treating EML4-ALK-positive low-grade serous ovarian cancer (LGSO) with intracranial metastasis. This may be the first clinical evidence of LGSO benefit from ALK inhibitors, to provide evidence for the use of ALK inhibitors in more ovarian cancer patients with EML4-ALK fusion and promoting new ideas for the study of EML4-ALK targets in ovarian cancer.

View Article and Find Full Text PDF

To determine the feasibility of implementing Ovarian-Adnexal Reporting & Data System (O-RADS) ultrasound (US) for reporting of adnexal masses at our institution, with a specific goal of increasing the use of O-RADS from a baseline of <5% to at least 75% over a 16-month period. A prospective interrupted time series quality improvement study was undertaken over a 16-month period. Plan, do, study, act cycles included: (1) Engagement of interested parties, (2) Targeted educational sessions, (3) Development of reporting templates, (4) Weekly audit-feedback.

View Article and Find Full Text PDF

Functional evaluation and clinical classification of BRCA2 variants.

Nature

January 2025

Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.

Germline BRCA2 loss-of function variants, which can be identified through clinical genetic testing, predispose to several cancers. However, variants of uncertain significance limit the clinical utility of test results. Thus, there is a need for functional characterization and clinical classification of all BRCA2 variants to facilitate the clinical management of individuals with these variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!