Angiogenesis is the biologic process of forming new blood vessels and is being investigated as an innovative therapeutic approach to help manage ischemic heart disease and peripheral vascular disease. Research studies have identified various angiogenic growth factors and progenitor cells that can enhance new blood vessel formation. Preclinical investigations in animal models have explored the potential use of growth factors with and without progenitor cells to treat myocardial ischemia. The results of clinical trials with growth factor infusions and gene therapy techniques to enhance growth factor production have shown some promise, but therapeutic angiogenesis remains at an early stage of development.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CRD.0b013e3181620e3bDOI Listing

Publication Analysis

Top Keywords

therapeutic angiogenesis
8
ischemic heart
8
growth factors
8
factors progenitor
8
progenitor cells
8
growth factor
8
angiogenesis treatment
4
treatment approach
4
approach ischemic
4
heart disease--part
4

Similar Publications

Aging is accompanied by a decline in neovascularization potential and increased susceptibility to ischemic injury. Here, we confirm the age-related impaired neovascularization following ischemic leg injury and impaired angiogenesis. The age-related deficits in angiogenesis arose primarily from diminished EC proliferation capacity, but not migration or VEGF sensitivity.

View Article and Find Full Text PDF

Exosomes in Oral Diseases: Mechanisms and Therapeutic Applications.

Drug Des Devel Ther

January 2025

Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People's Republic of China.

Exosomes, small extracellular vesicles secreted by various cells, play crucial roles in the pathogenesis and treatment of oral diseases. Recent studies have highlighted their involvement in orthodontics, periodontitis, oral squamous cell carcinoma (OSCC), and hand, foot, and mouth disease (HFMD). Exosomes have a positive effect on the inflammatory environment of the oral cavity, remodeling and regeneration of oral tissues, and offer promising therapeutic options for bone and periodontal tissue restoration.

View Article and Find Full Text PDF

BSP promotes skin wound healing by regulating the expression level of SCEL.

Cytotechnology

April 2025

Medical Aesthetics Teaching and Research Office, Rehabilitation and Health Department, Anhui College of Traditional Chinese Medicine, No.18 Wuxia mountain West Road, Wuhu, 241002 Anhui China.

Burn injuries are complex, life-threatening events involving intricate cellular and molecular processes, including angiogenesis, which is vital for effective wound healing. polysaccharide (BSP), a bioactive compound from , exhibits anti-inflammatory and wound-healing properties. However, its impact on angiogenesis modulation, particularly through the synaptopodin-2-like (SCEL) gene, remains poorly understood.

View Article and Find Full Text PDF

Targeting tumor angiogenesis with safe endogenous protein inhibitors is a promising therapeutic approach despite the plethora of the first line of emerging chemotherapeutic drugs. The extracellular matrix network in the blood vessel basement membrane and growth factors released from endothelial and tumor cells promote the neovascularization which supports the tumor growth. Contrastingly, small cleaved cryptic fragments of the C-terminal non collagenous domains of the same basement membrane display antiangiogenic effect.

View Article and Find Full Text PDF

Osteonecrosis of the femoral head (ONFH) is a prevalent orthopedic disorder characterized primarily by compromised blood supply. This vascular deficit results in cell apoptosis, trabecular bone loss, and structural collapse of the femoral head at late stage, significantly impairing joint function. While MRI is a highly effective tool for diagnosing ONFH in its early stages, challenges remain due to the limited availability and high cost of MRI, as well as the absence of routine MRI screening in asymptomatic patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!