Background: Mesenchymal stem cells (MSCs) have the potential to differentiate into distinct mesenchymal tissues; including cartilage and bone, they can be an attractive cell source for cartilage tissue engineering approaches. Our objective here was to compare the in vitro chondrogenic potential of MSCs isolated from patients with rheumatoid arthritis (RA) and osteoarthritis (OA) with cells from normal donors.

Methods: Marrow samples were removed during bone surgery and adherent cell cultures were established. The cells were then passed into a newly developed microaggregate culture system in a medium containing transforming growth factor beta3, insulin, dexamethasone and/or demineralized bone matrix. In vitro chondrogenic activity was measured as metabolic sulfate incorporation and type II collagen expression in pellet cultures.

Results: Culture-expanded MSCs from RA and OA patients did not differ significantly from the normal population with respect to their chondrogenic potential in vitro. Capability of total protein and proteoglycan synthesis as well as collagen II mRNA expression by cell aggregates was similar for all cell preparations in the presence of the appropriate growth and differentiation factors. Chondroprotective drugs such as chondroitin sulfate and glucosamine enhanced, whereas chloroquine inhibited chondrogenesis in normal donor-derived or patient-derived MSC cultures. Galectin-1, a beta-galactoside-binding protein with marked anti-inflammatory activity, stimulated the chondrogenic differentiation of mesenchymal cells in low (<2 microg/ml) concentration.

Discussion: These findings show that MSCs from RA and OA patients possess similar chondrogenic potential as MSCs isolated from healthy donors, therefore these cells may serve as a potential new prospect in cartilage replacement therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000140679DOI Listing

Publication Analysis

Top Keywords

chondrogenic potential
12
mesenchymal stem
8
stem cells
8
patients rheumatoid
8
rheumatoid arthritis
8
arthritis osteoarthritis
8
vitro chondrogenic
8
chondrogenic
5
cells
5
mesenchymal
4

Similar Publications

Hydroxycitric acid reconstructs damaged articular cartilages by modifying the metabolic cascade in chondrogenic cells.

Osteoarthr Cartil Open

March 2025

Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan.

Objective: Osteoarthritis, a degenerative joint disease, requires innovative therapies due to the limited ability of cartilage to regenerate. Since mesenchymal stem cells (MSCs) provide a cell source for chondrogenic cells, we hypothesize that chemicals capable of enhancing the chondrogenic potential of MSCs with transforming growth factor-beta (TGFβ) in vitro may similarly promote chondrogenesis in articular cartilage in vivo.

Design: Chemical compounds that enhance the TGFβ signaling for chondrogenesis were investigated utilizing mesenchymal stem cells derived from human induced pluripotent stem cells.

View Article and Find Full Text PDF

Injectable biomimetic hydrogel based on modified chitosan and silk fibroin with decellularized cartilage extracellular matrix for cartilage repair and regeneration.

Int J Biol Macromol

January 2025

Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94th, Tianjin 300071, PR China. Electronic address:

Cartilage defect repair remains a challenge for clinicians due to the limited self-healing capabilities of cartilage. Microenvironment-specific biomimetic hydrogels have shown great potential in cartilage regeneration because of their excellent biological properties. In this study, a hydrogel system consisting of p-hydroxybenzene propanoic acid-modified chitosan (PC), silk fibroin (SF) and decellularized cartilage extracellular matrix (DCM) was prepared.

View Article and Find Full Text PDF

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

Patellar dysplasia (PD) can cause patellar dislocation and subsequent osteoarthritis (OA) development. Herein, a novel ABCA6 mutation contributing to a four-generation family with familiar patellar dysplasia (FPD) is identified. In this study, whole exome sequencing (WES) and genetic linkage analysis across a four-generation lineage presenting with six cases of FPD are conducted.

View Article and Find Full Text PDF

Introduction: Repairing damaged cartilage poses significant challenges, particularly in cases of congenital cartilage defects such as microtia or congenital tracheal stenosis, or as a consequence of traumatic injury, as the regenerative potential of cartilage is inherently limited. Stem cell therapy and tissue engineering offer promising approaches to overcome these limitations in cartilage healing. However, the challenge lies in the size of cartilage-containing organs, which necessitates a large quantity of cells to fill the damaged areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!