Superior colliculus control of vibrissa movements.

J Neurophysiol

Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.

Published: September 2008

This study tested the role of the superior colliculus in generating movements of the mystacial vibrissae--whisking. First, we compared the kinematics of whisking generated by the superior colliculus with those generated by the motor cortex. We found that in anesthetized rats, microstimulation of the colliculus evoked a sustained vibrissa protraction, whereas stimulation of motor cortex produced rhythmic protractions. Movements generated by the superior colliculus are independent of motor cortex and can be evoked at lower thresholds and shorter latencies than those generated by the motor cortex. Next we tested the hypothesis that the colliculus is acting as a simple reflex loop with the neurons that drive vibrissa movement receiving sensory input evoked by vibrissa contacts. We found that most tecto-facial neurons do not receive sensory input. Not only did these neurons not spike in response to sensory stimulation, but field potential analysis revealed that subthreshold sensory inputs do not overlap spatially with tecto-facial neurons. Together these findings suggest that the superior colliculus plays a pivotal role in vibrissa movement--regulating vibrissa set point and whisk amplitude--but does not function as a simple reflex loop. With the motor cortex controlling the whisking frequency, the superior colliculus control of set point and amplitude would account for the main parameters of voluntary whisking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2544455PMC
http://dx.doi.org/10.1152/jn.90478.2008DOI Listing

Publication Analysis

Top Keywords

superior colliculus
24
motor cortex
20
colliculus control
8
generated superior
8
generated motor
8
simple reflex
8
reflex loop
8
sensory input
8
tecto-facial neurons
8
set point
8

Similar Publications

Volumetric alterations in auditory and visual subcortical nuclei following perinatal deafness in felines.

Neuroimage

January 2025

Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada. Electronic address:

In response to sensory deprivation, the brain adapts to efficiently navigate a modified perceptual environment through a process referred to as compensatory crossmodal plasticity, allowing the remaining senses to repurpose deprived regions and networks. A mechanism that has been proposed to contribute to this plasticity involves adaptations within subcortical nuclei that trigger cascading effects throughout the brain. The current study uses 7T MRI to investigate the effect of perinatal deafness on the volumes of subcortical structures in felines, focusing on key sensory nuclei within the brainstem and thalamus.

View Article and Find Full Text PDF

Glaucoma is a neurodegenerative disease characterized by the loss of retinal ganglion cells (RGCs), with intraocular pressure (IOP) being its primary risk factor. Despite controlling IOP, the neurodegenerative process often continues. Therefore, substances with neuroprotective, antioxidant, and anti-inflammatory properties could protect against RGC death.

View Article and Find Full Text PDF

Stronger premicrosaccadic sensitivity enhancement for dark contrasts in the primate superior colliculus.

Sci Rep

January 2025

Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller Str. 25, 72076, Tübingen, Germany.

Microsaccades are associated with enhanced visual perception and neural sensitivity right before their onset, and this has implications for interpreting experiments involving the covert allocation of peripheral spatial attention. However, the detailed properties of premicrosaccadic enhancement are not fully known. Here we investigated how such enhancement in the superior colliculus depends on luminance polarity.

View Article and Find Full Text PDF

Probabilistically constrained vector summation of motion direction in the mouse superior colliculus.

Curr Biol

January 2025

Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA; Department of Biology, University of Virginia, Charlottesville, VA 22904, USA. Electronic address:

Visual motion is a crucial cue for the brain to track objects and take appropriate actions, enabling effective interactions with the environment. Here, we study how the superior colliculus (SC) integrates motion information using asymmetric plaids composed of drifting gratings of different directions and speeds. With both in vivo electrophysiology and two-photon calcium imaging, we find that mouse SC neurons integrate motion direction by performing vector summation of the component gratings.

View Article and Find Full Text PDF

Unlabelled: Multiple sources innervate the visual thalamus to influence image-forming vision prior to the cortex, yet it remains unclear how non-retinal and retinal input coordinate to shape thalamic visual selectivity. Using dual-color two-photon calcium imaging in the thalamus of awake mice, we observed similar coarse-scale retinotopic organization between axons of superior colliculus neurons and retinal ganglion cells, both providing strong converging excitatory input to thalamic neurons. At a fine scale of ∼10 µm, collicular boutons often shared visual feature preferences with nearby retinal boutons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!