Human respiratory syncytial virus (HRSV) is released from the apical membrane of polarized epithelial cells. However, little is known about the processes of assembly and release of HRSV and which viral gene products are involved in the directional maturation of the virus. Based on previous studies showing that the fusion (F) glycoprotein contained an intrinsic apical sorting signal and that N- and O-linked glycans can act as apical targeting signals, we investigated whether the glycoproteins of HRSV were involved in its directional targeting and release. We generated recombinant viruses with each of the three glycoprotein genes deleted individually or in groups. Each deleted gene was replaced with a reporter gene to maintain wild-type levels of gene expression. The effects of deleting the glycoprotein genes on apical maturation and on targeting of individual proteins in polarized epithelial cells were examined by using biological, biochemical, and microscopic assays. The results of these studies showed that the HRSV glycoproteins are not required for apical maturation or release of the virus. Further, deletion of one or more of the glycoprotein genes did not affect the intracellular targeting of the remaining viral glycoproteins or the nucleocapsid protein to the apical membrane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2519684PMC
http://dx.doi.org/10.1128/JVI.00827-08DOI Listing

Publication Analysis

Top Keywords

polarized epithelial
12
epithelial cells
12
glycoprotein genes
12
human respiratory
8
respiratory syncytial
8
syncytial virus
8
glycoproteins required
8
required apical
8
apical targeting
8
targeting release
8

Similar Publications

Backgrounds: Recent studies have proven the oncogenic role of kinesin family member 20A () in several cancers. Tumor-associated macrophages (TAMs) were reported to participate in tumor initiation and metastasis. In this study, we aimed to explore the detailed mechanism underlying in regulating the progression of ovarian cancer and its involvement with TAMs.

View Article and Find Full Text PDF

Development of a Caco-2-based intestinal mucosal model to study intestinal barrier properties and bacteria-mucus interactions.

Gut Microbes

December 2025

Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.

The intestinal mucosal barrier is a dynamic system that allows nutrient uptake, stimulates healthy microbe-host interactions, and prevents invasion by pathogens. The mucosa consists of epithelial cells connected by cellular junctions that regulate the passage of nutrients covered by a mucus layer that plays an important role in host-microbiome interactions. Mimicking the intestinal mucosa for assays, particularly the generation of a mucus layer, has proven to be challenging.

View Article and Find Full Text PDF

Macrophage-derived cathepsin L promotes epithelial-mesenchymal transition and M2 polarization in gastric cancer.

World J Gastroenterol

December 2024

Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China.

Background: Advanced gastric tumors are extremely prone to metastasize the in 20%-30% of gastric cancer, and patients have a poor prognosis despite systemic chemotherapy. Peritoneal metastases from gastric cancer usually indicate the end stage of the disease without curative treatment.

Aim: To peritoneal metastasis for facilitating clinical therapy are urgently needed.

View Article and Find Full Text PDF

Background: Immunotherapy has shown promise for bladder cancer (BC) treatment but is effective only in a subset of patients. Understanding the tumor microenvironment (TME) and its regulators, such as the expression of N6-methyladenosine (m6A) regulators, may improve therapeutic outcomes. This study focuses on the role of IGF2BP2, an m6A reader, in modulating the BC TME.

View Article and Find Full Text PDF

During tissue morphogenesis, an interplay of biochemical pathways and mechanical cues regulates polarized cell behaviors, the balance of which leads to tissues reaching their correct shape and size. A well-studied example of a biochemical regulator is the highly conserved Fat-Dachsous (Ft-Ds) pathway that coordinates planar polarized cell behaviors and growth in epithelial tissues. For instance, in the Drosophila larval wing disc, the Ft-Ds pathway acts via the atypical myosin Dachs to control tissue shape by promoting the orientation of cell divisions primarily in a proximodistal (PD) direction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!