The effects of hyperglycemia, altered cell function, or inflammatory mediators on implant corrosion are not well studied; yet, these effects are critical to implant biocompatibility and osseointegration. Because implant placement is burgeoning, patients with medically compromising systemic conditions such as diabetes are increasingly receiving implants, and the role of other inflammatory diseases on implant corrosion also needs investigation. In the current study, the corrosion properties of commercially available, machined titanium implants were studied in blood, cultures of monocytic cells, and solutions containing elevated dextrose concentrations. Implant corrosion was estimated by open circuit potentials, linear polarization resistance, and electrical impedance spectroscopy (EIS) for 26 h. In selected samples, THP1 monocytic cells were activated for 2 h with Lipopolysaccharide prior to implant exposure, and IL-1beta secretion was measured to assess the affect of the implants on monocyte activation. Implants under conditions of inflammatory stress exhibited more negative E(corr) values, suggesting an increased potential for corrosion. Linear polarization measurements detected increased corrosion rates in the presence of elevated dextrose conditions over PBS conditions. EIS measurements suggested that implants underwent surface passivation reactions that may have limited corrosion over the short term of this test. This result was supported by cyclic polarization tests. IL-1beta secretion was not altered under conditions of corrosion or implant exposure. The results suggest that inflammatory stress and hyperglycemia may increase the corrosion of dental endosseous titanium-based implants, but that longer, more aggressive electrochemical conditions may be necessary to fully assess these effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.31162 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares Universirty, Tehran, Iran.
One of the most effective ways to solve the problems caused by the presence of steel implants in the body is to apply a coating to them. This study aims to develop and optimize composite coatings of magnesium oxide (MgO), 58S bioactive glass (BG), and N-carboxymethyl chitosan (N-CMC) on stainless steel (SS316L) substrates using the electrophoretic deposition (EPD) method. The synthesized materials were characterized using FTIR, XRD, and SEM to confirm their structure and morphology prior to coating.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Department of Bio and Nanotechnology, Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Strasse 2, 01109 Dresden, Germany.
Magnesium alloys are promising biodegradable implant materials due to their excellent biocompatibility and non-toxicity. However, their poor corrosion resistance limits their application in vivo. Plasma electrolytic oxidation (PEO) is a powerful technique to improve the corrosion resistance of magnesium alloys.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Condensed Matter Physics, Faculty of Physics, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran.
Research on hydroxyapatite (HAP) coatings for bone tissue applications has been investigated for decades due to their significant osteoconductive and bioactivity properties. HAP closely resembles the mineral component of human bone, making it ideal for biomedical applications such as implants. This study investigates the synthesis of hydroxyapatite nanoparticles (HAP-NPs) via the microemulsion method, which is essential for creating HAP coatings on the Ti-6Al-4V substrate.
View Article and Find Full Text PDFBioact Mater
February 2025
Medical School of Chinese PLA, Beijing, 100039, China.
Zn-based biodegradable metals (BMs) are regarded as revolutionary biomaterials for bone implants. However, their clinical application is limited by insufficient mechanical properties, delayed degradation, and overdose-induced Zn toxicity. Herein, innovative multi-material additive manufacturing (MMAM) is deployed to construct a Zn/titanium (Ti) hetero-structured composite.
View Article and Find Full Text PDFActa Biomater
December 2024
Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China. Electronic address:
Magnesium (Mg)-based alloys have been recognized as desirable biodegradable materials for orthopedic implants. However, their clinical application has been limited by rapid degradation rates, insufficient antibacterial and osteogenic-promotion properties. Herein, a MgF priming layer was first constructed on AZ31 surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!