Viviparity-driven conflict: more to speciation than meets the fly.

Ann N Y Acad Sci

Department of Biology and Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Nevada 89557, USA.

Published: August 2008

AI Article Synopsis

  • The Modern Synthesis used Mendelian genetics to understand how gene frequencies change in populations, linking gene interactions to hybrid inviability and sterility in speciation.
  • Despite advances in speciation models, many still rely on outdated genome concepts, leading to unresolved debates over the impacts of various evolutionary factors on reproductive isolation.
  • Recent research suggests that reproductive modes, particularly viviparity, significantly influence speciation by introducing genomic conflicts that can accelerate postzygotic isolation and promote complex genetic regulation mechanisms like genomic imprinting.

Article Abstract

Equipped with Mendel's laws and only rudimentary knowledge of genes and genomes, the architects of the Modern Synthesis provided key insights into the dynamics of gene frequency change within populations. Extension of population genetic models to speciation identified Dobzhansky-Muller incompatibilities (negative epistatic interactions between genes from isolated populations) as the primary cause of hybrid inviability and sterility, a view consistent with empirical findings on the genetics of reproductive isolation in Drosophila. Although speciation models have become increasingly mathematically sophisticated, many remain based on an overly static concept of the genome, grounded in Mendelian genetics and devoid of potentially important biological details. A unifying theory of speciation therefore remains elusive, with debate over the relative importance of natural selection, sexual selection, sexual conflict, genetic drift, and selfish genetic elements in the evolution of reproductive isolation. Drawing on recent findings in molecular genetics and comparative genomics, we revisit, update, and extend the theory that reproductive mode plays a crucial role in shaping the speciation process. By providing a direct conduit for manipulation of the mother's physiology by genes expressed in the embryo, viviparity creates a postfertilization arena for genomic conflicts absent in species that lay eggs. In polyandrous species, viviparity-driven conflict (VDC) is likely to generate perpetual antagonistic coevolution between genes expressed during embryonic development and those involved in maternal reproductive physiology, thereby accelerating the rate at which postzygotic isolation evolves between populations. Moreover, in mammals and flowering plants, VDC has favored the evolution of genomic imprinting and a central role for epigenetic mechanisms in the regulation of antagonistic patterns of gene expression by maternally and paternally inherited genomes. VDC can account for the rapid rate at which mammals and viviparous fishes lose their ability to hybridize; the key role of the triploid endosperm in postzygotic reproductive isolation in flowering plants; and the kinds of traits, genes, and gene regulatory systems most critical to the evolution of postzygotic reproductive isolation in live-bearing species.

Download full-text PDF

Source
http://dx.doi.org/10.1196/annals.1438.006DOI Listing

Publication Analysis

Top Keywords

reproductive isolation
16
viviparity-driven conflict
8
selection sexual
8
genes expressed
8
flowering plants
8
postzygotic reproductive
8
reproductive
6
speciation
5
genes
5
isolation
5

Similar Publications

Objective: To investigate the roles of fecal short-chain fatty acids (SCFAs) in polycystic ovary syndrome (PCOS).

Methods: The levels of SCFAs (acetate, propionate, and butyrate) in 83 patients with PCOS and 63 controls were measured, and their relationships with various metabolic parameters were analyzed. Intestinal microbiome analysis was conducted to identify relevant bacteria.

View Article and Find Full Text PDF

The great diversity of specialist plant-feeding insects suggests that host plant shifts may initiate speciation, even without geographic barriers. Pheromones and kairomones mediate sexual communication and host choice, and the response to these behaviour-modifying chemicals is under sexual and natural selection, respectively. The concept that the interaction of mate signals and habitat cues facilitates reproductive isolation and ecological speciation is well established, while the traits and the underlying sensory mechanisms remain unknown.

View Article and Find Full Text PDF

While investigating the potential for species to hybridize in the mixed populations of Point Sal and Burton Mesa in Santa Barbara County, California, we discovered that from the Nipomo Mesa (San Luis Obispo County), formerly considered a northern population of , are genetically and morphologically distinct. We name this new taxon after the ytt (Northern Chumash language) word for the Nipomo Mesa region. For morphological and molecular analyses, we sampled 54 plants, focusing on , , and from multiple species and comparative single species populations.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) remains a major concern for swine health. Isolating PRRSV is essential for identifying infectious viruses and for vaccine formulation. This study evaluated the potential of using tongue fluid (TF) from perinatal piglet mortalities for PRRSV isolation.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV), an important pathogen affecting the pig industry, is an RNA virus with high genetic diversity. In this study, 12,299 clinical samples were collected from northern China during 2021-2023 to investigate the molecular epidemiological characteristics and genetic evolution of PRRSV. All samples were screened using qRT-PCR and further analyzed through gene and whole-genome sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!