Transient cerebral ischemia increases CA1 pyramidal neuron excitability.

Exp Neurol

Department of Neurology, Baylor College of Medicine, 6501 Fannin Street, NB204, Houston, TX 77030, USA.

Published: August 2008

In human and experimental animals, the hippocampal CA1 region is one of the most vulnerable areas of the brain to ischemia. Pyramidal neurons in this region die 2-3 days after transient cerebral ischemia whereas other neurons in the same region remain intact. The mechanisms underlying the selective and delayed neuronal death are unclear. We tested the hypothesis that there is an increase in post-synaptic intrinsic excitability of CA1 pyramidal neurons after ischemia that exacerbates glutamatergic excitotoxicity. We performed whole-cell patch-clamp recordings in brain slices obtained 24 h after in vivo transient cerebral ischemia. We found that the input resistance and membrane time constant of the CA1 pyramidal neurons were significantly increased after ischemia, indicating an increase in neuronal excitability. This increase was associated with a decrease in voltage sag, suggesting a reduction of the hyperpolarization-activated non-selective cationic current (I(h)). Moreover, after blocking I(h) with ZD7288, the input resistance of the control neurons increased to that of the post-ischemia neurons, suggesting that a decrease in I(h) contributes to increased excitability after ischemia. Finally, when lamotrigine, an enhancer of dendritic I(h), was applied immediately after ischemia, there was a significant attenuation of CA1 cell loss. These data suggest that an increase in CA1 pyramidal neuron excitability after ischemia may exacerbate cell loss. Moreover, this dendritic channelopathy may be amenable to treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2008.04.032DOI Listing

Publication Analysis

Top Keywords

ca1 pyramidal
16
transient cerebral
12
cerebral ischemia
12
pyramidal neurons
12
ischemia
9
pyramidal neuron
8
neuron excitability
8
neurons region
8
input resistance
8
neurons increased
8

Similar Publications

Autism spectrum disorder (ASD) is marked by neurobehavioral developmental deficits, potentially linked to disrupted neuron-glia interactions. The astroglia Kir4.1 channel plays a vital role in regulating potassium levels during neuronal activation, and mutations in this channel have been associated with ASD.

View Article and Find Full Text PDF

Hypertension, if untreated, can disrupt the blood-brain-barrier (BBB) and reduce cerebral flow in the central nervous system (CNS) inducing hippocampal atrophy, potentially leading to cognitive deficits and vascular dementia. Spontaneous hypertensive rats (SHR) demonstrated neuroplastic alterations in the hippocampus, hyperlocomotion and memory deficits in males. Cerebrolysin (CBL), a neuropeptide preparation, induces synaptic and neuronal plasticity in various populations of neurons and repairs the integrity of the BBB.

View Article and Find Full Text PDF

Cannabis derivatives are among the most widely used psychoactive substances in the world, which leads to growing medical concerns regarding its chronic use and abuse especially among adolescents. Exposure to THC during formative years produces long-term behavioral alterations that share similarities with symptoms of psychiatric and neurodevelopmental disorders. In this study, we have analyzed the functional and molecular mechanisms that might underlie these alterations.

View Article and Find Full Text PDF
Article Synopsis
  • Variants associated with neurodevelopmental impairments in children are complex and challenging to evaluate due to their diverse nature and unclear causes.
  • The study highlights a case of a child with neonatal-onset epilepsy and a specific genetic variant (G256W) that impacts ion channel function and leads to reduced cell stability and conduction in nervous tissue.
  • The research also establishes a mouse model that exhibits epilepsy and hyperexcitability in brain cells, linking the genetic variant to observable neurological behaviors and suggesting potential wider implications for understanding similar conditions in other patients.
View Article and Find Full Text PDF

Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying CA1 PC differentiation and the development of this inhibitory circuit motif.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!