Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Effect of mutations mimicking phosphorylation on the structure of human 14-3-3zeta protein was analyzed by different methods. Mutation S58E increased intrinsic Trp fluorescence and binding of bis-ANS to 14-3-3. At low protein concentration mutation S58E increased the probability of dissociation of dimeric 14-3-3 and its susceptibility to proteolysis. Mutation S184E slightly increased Stokes radius and thermal stability of 14-3-3. Mutation T232E induced only small increase of Stokes radius and sedimentation coefficient that probably reflect the changes in the size or shape of 14-3-3. At low protein concentration the triple mutant S58E/S184E/T232E tended to dissociate, whereas at high concentration its properties were comparable with those of the wild type protein. The triple mutant was highly susceptible to proteolysis. Thus, mutation mimicking phosphorylation of Ser58 destabilized, whereas mutation of Ser184 induced stabilization of 14-3-3zeta structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2008.05.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!